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Wireless Characteristics

◼Low bandwidth

◼Long or variable latency

◼Random Errors

 If number of errors is small

◼May be corrected by an error correcting code

Excessive bit errors 

◼ Result in a packet being discarded, possibly before it 

reaches the transport layer
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Random Errors
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 May cause fast retransmit

 Example assumes delayed ack - every other packet 

ack’d
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3634
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Random Errors
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 May cause fast retransmit

 Example assumes delayed ack - every other packet 

ack’d
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 May cause fast retransmit

 Example assumes delayed ack - every other packet 

ack’d
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Random Errors
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 May cause fast retransmit

 Example assumes delayed ack - every other packet 

ack’d
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36
3 duplicate acks trigger 

fast retransmit at sender

Random Errors
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 May cause fast retransmit

 Example assumes delayed ack - every other packet 

ack’d



Random Errors
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 Fast retransmit results in

 Retransmission of lost packet

 Reduction in congestion window

 Reducing congestion window 

 Unnecessary response to errors

 Reduces the throughput



Random Errors
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 Sometimes congestion response is appropriate

 Interference due to other users

 Reduce congestion window

 Bad channel for a long duration

 Let TCP backoff

 Do not unnecessarily attempt retransmissions while the 

channel remains in the bad state

 But what about errors for which reducing 

congestion window is an inappropriate response?

 Noise

 Do not reduce window



Timeouts
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 Burst errors may cause timeouts
 If wireless link remains unavailable for extended 

duration, a window worth of data may be lost
 Driving through a tunnel

 Passing a truck

 Timeout results in slow start 
 Slow start reduces congestion window to 1 MSS,  reducing 

throughput

 Reduction in window in response to burst errors?

 Random errors may also cause timeouts
 Multiple packet losses in a window can result in 

timeout when using TCP-Reno
 And to a lesser extent when using SACK



Impact of Transmission Errors
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 TCP cannot distinguish between packet losses 

due to congestion and transmission errors

 Unnecessarily reduces congestion window

 Throughput suffers



Ideal Behavior
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 Ideal TCP behavior

 Simply retransmit a packet lost due to transmission 

errors

 Take no congestion control actions

 Ideal TCP typically not realizable

 Ideal network behavior

 Transmission errors should be hidden from the sender

 Errors should be recovered transparently and efficiently

 Proposed schemes attempt to approximate one of 

the above two ideals



Techniques
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 Nature of actions taken to improve 

performance

 Hide error losses from the sender

 Sender is unaware of error-based losses

 Will not reduce congestion window

 Let sender know, or determine, cause of packet loss

 Sender knows about cause of packet loss

 Will not reduce congestion window



Techniques
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 Where modifications are needed

 At the sender node only

 At the receiver node only

 At intermediate node(s) only

 Combinations of the above



Schemes
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 Link level mechanisms

 Split connection approach

 TCP-Aware link layer

 TCP-Unaware approximation of TCP-aware 

link layer

 Explicit notification

 Receiver-based discrimination

 Sender-based discrimination 



Link Layer Mechanisms:

Forward Error Correction
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 Forward Error Correction  (FEC) can be used 

to correct small number of errors

 Correctable errors hidden from the TCP sender

 FEC incurs overhead even when errors do not 

occur

 Adaptive FEC schemes can reduce the overhead by 

choosing appropriate FEC dynamically

FEC FEC FEC FEC

retransmission



Link Layer Mechanisms:

Link Level Retransmissions
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 Retransmit a packet at the link layer, if errors 

are detected

 Retransmission overhead incurred only if 

errors occur

 Unlike FEC overhead

 In general

 Use FEC to correct a small number of errors

 Use link level retransmission when FEC capability is 

exceeded
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Link Level Retransmissions
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Link Level Retransmissions
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 How many retransmissions at the link level 

before giving up?

 Finite bound -- semi-reliable link layer

 No bound -- reliable link layer

 What triggers link level retransmissions?

 Link layer timeout mechanism

 Link level acks (negative acks, dupacks, …)

 Other mechanisms (e.g., Snoop, as discussed later)
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Link Level Retransmissions

 How much time is required for a link layer 

retransmission?

 Small fraction of end-to-end TCP RTT

 Large fraction/multiple of end-to-end TCP RTT



Link Level Retransmissions
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 Retransmissions can cause 

 Head-of-the-line blocking

 Congestion losses

Base station

Receiver 1

Receiver 2



Link Level Retransmissions
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 The sender’s Retransmission Timeout (RTO) 

 Function of measured RTT (round-trip times)

 Link level retransmits increase RTT, therefore, RTO

 Infrequent errors

 RTO will not account for RTT variations due to link 

level retransmissions

 Frequent errors 

 Increase RTO significantly on slow wireless links



Link Level Retransmissions
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 Not all connections benefit from 

retransmissions 

 Audio

 Need to be able to specify requirements on a 

per-packet basis

 Should the packet be retransmitted? 

 How many times?

 Need a standard mechanism to specify the 

requirements



Link Layer Schemes: Summary
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 When is a reliable link layer beneficial to TCP 

performance?

 If TCP retransmission timeout is large enough to 

tolerate additional delays due to link level 

retransmits



Link Layer Mechanisms: Hiding Losses
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 Hide wireless losses from TCP sender

 Link layer modifications needed at both ends 

of wireless link

 TCP need not be modified



Split Connection Approach
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 End-to-end TCP connection is broken into 

 One connection on the wired part of route

 One over wireless part of the route

 A single TCP connection split into two TCP 

connections

 If wireless link is not last on route

 More than two TCP connections may be needed



Split Connection Approach
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 Connection between wireless host MH and 

fixed host (FH) goes through base station (BS)

 FH -> MH   =   FH -> BS    +    BS -> MH

FH MHBS

Base Station Mobile HostFixed Host



Split Connection Approach
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 Split connection results in independent flow 

control for the two parts

 Flow/error control protocols, packet size, 

time-outs, may be different for each part

FH MHBS

Base Station Mobile HostFixed Host
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Split Connection Approach
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 Indirect TCP

 FH -> BS connection : Standard TCP

 BS -> MH connection : Standard TCP

 Selective Repeat Protocol (SRP)

 FH -> BS connection : standard TCP

 BS -> FH connection : selective repeat protocol on 

top of UDP

 Performance better than Indirect-TCP (I-TCP) 

 Wireless portion of connection can be tuned to wireless 

behavior



Split Connection Approach: Advantages
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 BS-MH connection can be optimized 

independent of FH-BS connection

 Local recovery of errors

 Good performance achievable using 

appropriate BS-MH protocol

 Standard TCP on BS-MH performs poorly 

 Selective acks improve performance



Split Connection Approach : Disadvantages
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 End-to-end semantics violated

 ack may be delivered to sender, before data 

delivered to the receiver

 May not be a problem for applications that do not 

rely on TCP for the end-to-end semantics

FH MHBS

38

39

37

3640



Split Connection Approach : Disadvantages
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 BS retains hard state

 BS failure can result in loss of data (unreliability)

 If BS fails, packet 40 will be lost 

 Because it is ack’d to sender, the sender does not buffer 

40

FH MHBS

38

39

37

3640



Split Connection Approach : Disadvantages
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 BS retains hard state

 Hand-off latency increases due to state transfer

 Data that has been ack’d to sender, must be moved to 

new base station

FH MHBS

38

39

37

3640

MH

New base station

Hand-off

38

39



Split Connection Approach : Disadvantages
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 Buffer space needed at BS for each TCP 

connection

 BS buffers tend to get full with a slow wireless link 

slower 

 One window of data on wired connection could be stored 

at base station for each split connection

 Window on BS-MH connection reduced in 

response to errors

 May not be an issue for wireless links with small 

delay-bw product



Split Connection Approach : Disadvantages
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 Extra copying of data at BS

 Copying from FH-BS socket buffer to BS-MH socket buffer

 Increases end-to-end latency

 May not be useful if data and acks traverse different 
paths (both do not go through the base station)

 Example: data on a satellite wireless hop, acks on a dial-up 
channel

FH MH

data

ack



TCP-Aware Link Layer
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 Snoop Protocol

 Retains local recovery of Split Connection 

approach and link level retransmission schemes

 Improves on split connection

 End-to-end semantics retained

 Soft state at base station, instead of hard state
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Snoop Protocol
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Snoop Protocol
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 Buffers data packets at the base station BS
 To allow link layer retransmission

 When dupacks received by BS from MH, 
retransmit on wireless link, if packet present in 
buffer

 Prevents fast retransmit at TCP sender FH by 
dropping the dupacks at BS

FH MHBS

Base Station Mobile HostFixed Host
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FH MHBS
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FH MHBS
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FH MHBS
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Snoop Protocol



Snoop Protocol: When Beneficial?
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 Snoop 

 Prevents fast retransmit despite transmission errors 

on the wireless link

 If wireless link level delay-bandwidth product is 

less than 4 packets

 Simple (TCP-unaware) link level retransmission 

scheme can suffice

 Since delay-bandwidth product is small

 Retransmission scheme can deliver the lost packet 

without resulting in 3 dupacks from the TCP receiver



Snoop Protocol: Advantages
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 High throughput 

 Performance further improved using selective acks

 Local recovery from wireless losses

 Fast retransmit not triggered at sender 

 End-to-end semantics retained

 Soft state at base station

 Loss of the soft state affects performance, but not 

correctness



Snoop Protocol: Disadvantages
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 Link layer at base station needs to be TCP-

aware

 Not useful if TCP headers are encrypted 

(IPsec)

 Cannot be used if TCP data and TCP acks 

traverse different paths (both do not go 

through the base station)



WTCP Protocol
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 Snoop hides wireless losses from the sender

 But sender’s RTT estimates may be larger in 

presence of errors

 Larger RTO results in slower response for 

congestion losses

FH MHBS

Base Station Mobile HostFixed Host



WTCP Protocol
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 Local recovery

 Timestamp option to estimate RTT

 The base station 

 Adds base station residence time to the timestamp 

when processing an ack received from the wireless 

host

 Sender’s RTT estimate 

 Not affected by retransmissions on wireless link
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WTCP Protocol

FH BS MH

3 3

34

Numbers in this figure are timestamps

Base station residence time is 1 unit



WTCP : Disadvantages
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 Requires use of the timestamp option
 May be useful only if retransmission times are 

large
 Link stays in bad state for a long time
 Link frequently enters a bad state
 Link delay large

 WTCP does not account for congestion on 
wireless hop
 Assumes that all delay at base station is due to queuing 

and retransmissions
 Will not work for shared wireless LAN, where delays 

also incurred due to contention with other 
transmitters



TCP-Unaware Approximation of TCP-Aware 

Link Layer
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 Delayed Dupacks Protocol
 Attempts to imitate Snoop, without making the 

base station TCP-aware

 Snoop implements two features at the base station

 Link layer retransmission

 Reducing interference between TCP and link layer 
retransmissions (by dropping dupacks)

 Delayed Dupacks implements the same two 
features
 At BS : link layer retransmission

 At MH : reducing interference between TCP and link layer 
retransmissions (by delaying dupacks)



Fall 2025© CS 439 Staff, University of Illinois
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Delayed Dupacks Protocol
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 Delayed dupacks released after interval D, if 

missing packet not received by then

 Link layer maintains state to allow 

retransmission

 Link layer state is not TCP-specific
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Delayed Dupacks Scheme: Advantages

 Link layer need not be TCP-aware

 Can be used even if TCP headers are 

encrypted

 Works well for relatively small wireless RTT 

(compared to end-to-end RTT)

 Relatively small delay D sufficient in such cases



Delayed Dupacks Scheme: Disadvantages
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 Right value of dupack delay D dependent on 

the wireless link properties

 Mechanisms to automatically choose D needed

 Delays dupacks for congestion losses too, 

delaying congestion loss recovery



Explicit Notification Schemes
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 General Philosophy
 Approximate Ideal TCP behavior 

 TCP sender should simply retransmit a packet lost due to 
transmission errors

 No congestion control actions

 Wireless node 

 Determines that packets are lost due to errors 

 Informs sender using an explicit notification

 Sender - on notification
 Does not reduce congestion window

 Retransmits lost packet
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Explicit Notification Schemes

 Motivated by the Explicit Congestion Notification 

(ECN) proposals

 Variations proposed in literature differ in

 Who sends explicit notification

 How they know to send the explicit notification

 What the sender does on receiving the notification



Explicit Loss Notification – MH as TCP 

Sender
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 Wireless link first on the path from sender to receiver

 Base station 
 Keeps track of holes in the packet sequence

 Dupack from receiver
 Base station compares the dupack sequence number with  recorded 

holes

 If there is a match, an ELN bit is set in the dupack

 Sender - Dupack with ELN set
 Retransmit packet

 Do not reduce congestion window

MH FHBS
4 3 2 1 134

wireless

Record hole at 2

111 1
Dupack with ELN set



Explicit Loss Notification – MH as TCP 

Sender
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 Base station 
 Attempts to deliver packets to the MH using a link 

layer retransmission scheme

 If packet cannot be delivered using a small number 
of retransmissions
 BS sends a Explicit Bad State Notification (EBSN) message 

to TCP sender

 When TCP sender receives EBSN, it resets its 
timer
 Timeout delayed, when wireless channel in bad 

state



Explicit Loss Notification - MH as TCP 

receiver
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 Approximate hypothetical ELN

 Base station
 Caches TCP sequence numbers 

 Does not cache data packets

 If sequence number for lost packet is cached at 
the base station 
 Duplicate acks are tagged with ELN bit before being 

forwarded to sender

 Sender takes appropriate action on receiving 
ELN
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Explicit Loss Notification - MH as TCP 

receiver

37

36

37

3839

39

38

Sequence numbers

cached at base station

37 37

Dupack with ELN



Receiver-Based Discrimination Scheme
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 MH is TCP receiver

 Use heuristics to guess cause of packet loss

 If packet loss is “due” to errors

 Send a notification to the TCP sender

 TCP sender - on notification

 Retransmit lost packet

 Do not reduce congestion window
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Receiver-Based Scheme

FH MHBS

1012 11

FH MHBS

11

1012

T

Congestion loss
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Receiver-Based Scheme

FH MHBS

1012 11

FH MHBS

101112
Error loss

2 T



Receiver-Based Scheme
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 Receiver uses the inter-arrival time between 

consecutively received packets to guess the 

cause of a packet loss

 On determining a packet loss as being due to 

errors, the receiver may 

 Tag corresponding dupacks with an ELN bit, or 

 Send an explicit notification to sender



Receiver-Based Scheme: Disadvantages
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 Limited applicability

 The slowest link on the path must be the last 

wireless hop

 To ensure some queuing will occur at the base 

station

 The queueing delays for all packets (at the base 

station) should be somewhat uniform

 Multiple connections on the link will make inter-

packet delays variable



Receiver-Based Scheme: Advantages
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 Can be implemented without modifying the 

base station (an “end-to-end” scheme)

 May be used despite encryption, or if data & 

acks traverse different paths



Sender-Based Discrimination Scheme
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 Sender can attempt to determine cause of a 

packet loss

 If packet loss determined to be due to errors, 

do not reduce congestion window

 Sender can only use statistics based on round-

trip times, window sizes, and loss pattern

 Unless network provides more information 

(example: explicit loss notification)



Sender-Based Heuristics: Disadvantage
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 Does not work quite well enough as yet !!

 Reason

 Statistics collected by the sender garbled by other 

traffic on the network

 Not much correlation between observed short-

term statistics, and onset of congestion



Sender-Based Heuristics: Advantages
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 Only sender needs to be modified

 Needs further investigation to develop better 

heuristics

 Investigate longer-term heuristics



TCP in Presence of Transmission Errors: 

Summary
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 Many techniques have been proposed, and several 

approaches perform well in many environments

 Recommendation: Prefer end-to-end techniques

 End-to-end techniques are those which do not require 

TCP-Specific help from lower layers

 Lower layers may help improve TCP performance 

without taking TCP-specific actions. 

 Examples:

 Semi-reliable link level retransmission schemes

 Explicit notification
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