#### CS/ECE 439: Wireless Networking

Physical Layer - Diversity





## Inter-Symbol Interference

- Larger difference in path length can cause inter-symbol interference (ISI)
- Suppose the receiver can do some processing
  - Add/subtracted scaled and delayed copies of the signal



#### Dynamic Equalization

- Combine multiple delayed copies of the signal
  - ex: linear equalizer circuit



#### **Equalization Discussion**



- Use multiple delayed copies of the received signal to try to reconstruct the original signal
- Weights are set dynamically
  - ▶ Typically based on some known "training" sequence
- Effectively uses the multiple copies of the signal to reinforce each other
  - But only works for paths that differ in length by less than the depth of the pipeline



#### Diversity Techniques

#### Spatial diversity

- Exploit fact that fading is location-specific
- Use multiple nearby antennas and combine signals
  - Can be directional

#### Frequency diversity

- Spread signal over multiple frequencies/broader frequency band
  - For example, spread spectrum

#### Channel Diversity

- Distribute signal over multiple "channels"
  - "Channels" experience independent fading
  - ▶ Reduces the error, i.e. only part of the signal is affected

#### Time diversity

- Spread data out over time
- Expand bit stream into a richer digital signal
  - Useful for bursty errors, e.g. slow fading
  - A specific form of channel coding

## Spatial Diversity

- Use multiple antennas that pick up the signal in slightly different locations
  - Can use more than two antennas!
- Each antenna experiences different channels
  - If antennas are sufficiently separated, chances are that the signals are mostly uncorrelated
  - If one antenna experiences deep fading, chances are that the other antenna has a strong signal
    - $\blacktriangleright$  Antennas should be separated by  $\frac{1}{2}$  wavelength or more
- Applies to both transmit and receive side
  - ▶ Channels are symmetric

#### Receiver Diversity

- Simplest solution
  - ▶ Selection diversity: pick antenna with best SNR
- But why not use both signals?
  - + More information
  - Signals out of phase, e.g. kind of like multi-path
  - ? Don't amplify the noise
- Maximal ratio combining: combine signals with a weight that is based on their SNR
  - Weight will favor the strongest signal (highest SNR)



#### Transmit Diversity

- Same as receive diversity but the transmitter has multiple antennas
- Selection diversity: transmitter picks the best antenna
  - i.e. with best channel to receiver
  - Sender "precodes" the signal
- How does transmitter learn channel?
  - Gets explicit feedback from the receiver
  - Rely on channel reciprocity



## Typical Algorithm in 802.11

- Use transmit + receive selection diversity
- How to explore all channels to find the best one
   ... or at least the best transmit antenna
- Receiver
  - Use the antenna with the strongest signal
  - ▶ Always use the same antenna to send the acknowledgement gives feedback to the sender



## Typical Algorithm in 802.11

- Use transmit + receive selection diversity
- How to explore all channels to find the best one
  ... or at least the best transmit antenna
- Sender
  - Pick an antenna to transmit and learn about the channel quality based on the ACK
  - Occasionally try the other antenna to explore the channel between all four channel pairs



#### Spread Spectrum

- Spread transmission over a wider bandwidth
  - Don't put all your eggs in one basket!
  - Good for military
    - Jamming and interception becomes harder
  - Also useful to minimize impact of a "bad" frequency in regular environments
- What can be gained from this apparent waste of spectrum?
  - Immunity from various kinds of noise and multipath distortion
  - Can be used for hiding and encrypting signals
  - Several users can independently use the same higher bandwidth with very little interference

# Frequency Hopping Spread Spectrum (FHSS)

- Have the transmitter hop between a seemingly random sequence of frequencies
  - ▶ Each frequency has the bandwidth of the original signal
- Dwell time is the time spent using one frequency
- Spreading code determines the hopping sequence
  - Must be shared by sender and receiver (e.g. standardized)



# Example: Original 802.11 Standard (FH)

#### ▶ 96 channels of I MHz

- Only 78 used in US
  - Other countries used different numbers
- ▶ Each channel carried only ~1% of the bandwidth
- I or 2 Mbps per channel
- Dwell time was configurable
  - ▶ FCC set an upper bound of 400 msec
  - Transmitter/receiver must be synchronized
- Standard defined 26 orthogonal hop sequences
  - Transmitter used a beacon on fixed frequency to inform the receiver of its hop sequence
- Can support multiple simultaneous transmissions use different hop sequences
  - e.g. up to 10 co-located APs with their clients

## Example: Bluetooth

- ▶ 79 frequencies with a spacing of I MHz
  - Other countries use different numbers of frequencies
- Frequency hopping rate is 1600 hops/s
- Maximum data rate is I MHz

#### Direct Sequence Spread Spectrum (DSSS)

- Each bit in original signal is represented by multiple bits (chips) in the transmitted signal
- Spreading code spreads signal across a wider frequency band
  - Spread is in direct proportion to number of bits used
  - e.g. exclusive-OR of the bits with the spreading code
- The resulting bit stream is used to modulate the signal



#### Direct Sequence Spread Spectrum (DSSS)



#### **Properties**

- Each bit is sent as multiple chips
  - Need more bps bandwidth to send signal
  - Number of chips per bit = spreading ratio
    - ▶ This is the spreading part of spread spectrum
- Need more spectral bandwidth
  - Nyquist and Shannon say so!
- Advantages
  - ▶ Transmission is more resilient.
    - DSSS signal will look like noise in a narrow band
    - Can lose some chips in a word and recover easily
  - ▶ Multiple users can share bandwidth

#### Example: Original 802.11 Standard (DSSS)

#### DSSS PHY

- ▶ I Msymbol/s rate
- ▶ II-to-I spreading ratio
- Barker chipping sequence
  - ▶ Barker sequence has low autocorrelation properties
    - ☐ The similarity between observations as a function of the time lag between them
- Uses about 22 MHz
- Receiver decodes by counting the number of "I" bits in each word
  - ▶ 6"1" bits correspond to a 0 data bit
- Data rate
  - ▶ I Mbps (i.e. I I Mchips/sec)
  - Extended to 2 Mbps
    - ▶ Requires the detection of a ¼ phase shift



## Example: 802.11b

- ▶ (Maximum) data rate
  - ▶ II Mbs
- Complementary Code Keying (CCK)
  - Complementary means that the code has good autocorrelation properties
    - Want nice properties to ease recovery in the presence of noise, multipath interference,..
  - ▶ Each word is mapped onto an 8 bit chip sequence
  - Symbol rate at 1.375 MSymbols/sec, at 8 bpS = 11 Mbps
- Symbol rate
  - ▶ 1.375 MSymbols/sec, at 8 bpS = 11 Mbps



#### Code Division Multiple Access

- Users share spectrum and time, but use different codes to spread their data over frequencies
  - ▶ DSSS where users use different spreading sequences
  - Use spreading sequences that are orthogonal, i.e. they have minimal overlap
  - Frequency hopping with different hop sequences
- The idea is that users will only rarely overlap and the inherent robustness of DSSS will allow users to recover if there is a conflict
  - Overlap = use the same the frequency at the same time
  - ▶ The signal of other users will appear as noise

#### CDMA Principle

- Basic Principles of CDMA
  - ▶ D = rate of data signal
  - Break each bit into k chips user-specific fixed pattern
  - Chip data rate of new channel = kD
- ▶ If k=6 and code is a sequence of Is and -Is
  - ▶ For a 'l' bit, A sends code as chip pattern
    - > <c1, c2, c3, c4, c5, c6>
  - For a '0' bit, A sends complement of code
    - <-c1, -c2, -c3, -c4, -c5, -c6>
- Receiver knows sender's code and performs electronic decode function

$$S_u(d) = d1 \times c1 + d2 \times c2 + d3 \times c3 + d4 \times c4 + d5 \times c5 + d6 \times c6$$

- $\rightarrow$  <d1, d2, d3, d4, d5, d6> = received chip pattern
- > <c1, c2, c3, c4, c5, c6> = sender's code



#### CDMA Example

- User A code = <1,-1,-1,1,-1,1>
  - ▶ To send a | bit = <1,-1,-1,1,-1,1>
  - ▶ To send a 0 bit = <-1, 1, 1, -1, 1, -1>
- ▶ User B code = <1, 1, -1, -1, 1, 1>
  - ▶ To send a | bit = <1, 1, -1, -1, 1, 1>
- Receiver receiving with A's code
  - ► (A's code) x (received chip pattern)
    - User A 'I' bit: 6 -> I
    - User A '0' bit: -6 -> 0
    - User B'I' bit: 0 -> unwanted signal ignored

#### CDMA Example

- CDMA cellular standard
  - Used in the US, e.g. Sprint
- Allocates 1.228 MHz for base station to mobile communication
  - Shared by 64 "code channels"
  - ▶ Used for voice (55), paging service (8), and control (1)
- Provides a lot error coding to recover from errors
  - Voice data is 8550 bps
  - Coding and FEC increase this to 19.2 kbps
  - Then spread out over 1.228 MHz using DSSS; uses QPSK



#### Discussion

- Spread spectrum is very widely used
- Effective against noise and multipath
  - Signal looks like noise to other nodes
  - Multiple transmitters can use the same frequency range
- FCC requires the use of spread spectrum in ISM band
  - If signal is above a certain power level
- Is also used in higher speed 802.11 versions.
  - ▶ No surprise!



## Time Redundancy: Bit Stream Level

- Protect digital data by introducing redundancy in the transmitted data
  - Error detection codes: can identify certain types of errors
  - ▶ Error correction codes: can fix certain types of errors
- Block codes provide Forward Error Correction (FEC) for blocks of data
  - ▶ (n, k) code: n bits are transmitted for k information bits
  - Simplest example: parity codes
  - Many different codes exist: Hamming, cyclic, Reed-Solomon, ...
- Convolutional codes provide protection for a continuous stream of bits
  - Coding gain is n/k
  - Turbo codes: convolutional code with channel estimation



#### Time Diversity Example

- Spread blocks of bytes out over time
- Can use FEC or other error recovery techniques to deal with burst errors



#### Error Detection/Recovery

- Adds redundant information that checks for errors
  - And potentially fix them
  - If not, discard packet and resend
- Occurs at many levels
  - Demodulation of signals into symbols (analog)
  - Bit error detection/correction (digital)—our main focus
    - Within network adapter (CRC check)



#### Error Detection/Recovery

- Analog Errors
  - Example of signal distortion
- Hamming distance
  - Parity and voting
  - Hamming codes
- Error bits or error bursts?
- Digital error detection
  - Two-dimensional parity
  - Cyclic Redundancy Check (CRC)



#### Analog Errors

# Consider the following encoding of 'Q'





# Encoding isn't perfect





# Encoding isn't perfect





#### Symbols



possible binary voltage encoding symbol neighborhoods and erasure region



#### Symbols



#### QAM

- Phase and amplitude modulation
- 2-dimensional representation
  - Angle is phase shift
  - Radial distance is new amplitude

16-symbol example



## Symbols



16-symbol example



possible QAM symbol neighborhoods in green; all other space results in erasure



#### Digital error detection and correction

#### Input: decoded symbols

- Some correct
- Some incorrect
- Some erased

#### Output:

- Correct blocks (or codewords, or frames, or packets)
- Erased blocks



#### Error Detection Probabilities

#### Definitions

- ▶ P<sub>b</sub>: Probability of single bit error (BER)
- $\triangleright$  P<sub>1</sub>: Probability that a frame arrives with no bit errors
- ▶ P<sub>2</sub>: While using error detection, the probability that a frame arrives with one or more undetected errors
- P<sub>3</sub>: While using error detection, the probability that a frame arrives with one or more detected bit errors but no undetected bit errors



## Error Detection Probabilities

With no error detection

$$P_1 = (1 - P_b)^F$$

$$P_2 = 1 - P_1$$

$$P_3 = 0$$

▶ F = Number of bits per frame



## **Error Detection Process**

#### ▶ Transmitter

- ▶ For a given frame, an error-detecting code (check bits) is calculated from data bits
- Check bits are appended to data bits

#### Receiver

- Separates incoming frame into data bits and check bits
- Calculates check bits from received data bits
- Compares calculated check bits against received check bits
- Detected error occurs if mismatch



# Parity

- Parity bit appended to a block of data
- Even parity
  - Added bit ensures an even number of Is
- Odd parity
  - Added bit ensures an odd number of Is
- Example
  - ▶ 7-bit character III0001
  - ▶ Even parity III000I 0
  - ▶ Odd parity
    III0001 |



# Parity: Detecting Bit Flips

- ▶ I-bit error detection with parity
  - Add an extra bit to a code to ensure an even (odd) number of Is
  - Every code word has an even (odd) number of Is





# Voting: Correcting Bit Flips

- ▶ I-bit error correction with voting
  - Every codeword is transmitted n times
  - Codeword is 3 bits long





# Voting: 2-bit Erasure Correction

# Every code word is copied 3 times



2-erasure planes in green remaining bit not ambiguous

cannot correct I-error and I-erasure



# Hamming Distance

- The Hamming distance between two code words is the minimum number of bit flips to move from one to the other
  - Example:
  - ▶ 00101 and 00010
  - ▶ Hamming distance of 3



# Minimum Hamming Distance

- The minimum Hamming distance of a code is the minimum distance over all pairs of codewords
  - Minimum Hamming Distance for parity
    - **2**
  - Minimum Hamming Distance for voting
    - **3**



# Coverage

## N-bit error detection

- No code word changed into another code word
- Requires Hamming distance of N+I

#### N-bit error correction

- N-bit neighborhood: all codewords within N bit flips
- ▶ No overlap between N-bit neighborhoods
- ▶ Requires hamming distance of 2N+I



- Linear error-correcting code
- Named after Richard Hamming
- Simple, commonly used in RAM (e.g., ECC-RAM)
- Can detect up to 2-bit errors
- ▶ Can correct up to I-bit errors



#### Construction

- number bits from I upward
- powers of 2 are check bits
- all others are data bits
- Check bit j: XOR of all k for which (j AND k) = j
  - Example:
    - 4 bits of data, 3 check bits





#### Construction

- number bits from I upward
- powers of 2 are check bits
- all others are data bits
- Check bit j: XOR of all k for which (j AND k) = j
  - Example:
    - 4 bits of data, 3 check bits





#### Construction

- number bits from I upward
- powers of 2 are check bits
- all others are data bits
- Check bit j: XOR of all k for which (j AND k) = j
  - Example:
    - 4 bits of data, 3 check bits









# What are we trying to handle?

#### Worst case errors

- We solved this for I bit error
- ▶ Can generalize, but will get expensive for more bit errors

## Probability of error per bit

▶ Flip each bit with some probability, independently of others

#### Burst model

- Probability of back-to-back bit errors
- Error probability dependent on adjacent bits
- Value of errors may have structure

## Why assume bursts?

- Appropriate for some media (e.g., radio)
- ▶ Faster signaling rate enhances such phenomena



# Digital Error Detection Techniques

#### Two-dimensional parity

- Detects up to 3-bit errors
- Good for burst errors

#### IP checksum

- Simple addition
- Simple in software
- Used as backup to CRC

## Cyclic Redundancy Check (CRC)

- Powerful mathematics
- Tricky in software, simple in hardware
- Used in network adapter



# Two-Dimensional Parity



## Use I-dimensional parity

 Add one bit to a 7-bit code to ensure an even/odd number of Is

#### Add 2nd dimension

- Add an extra byte to frame
  - Bits are set to ensure even/odd number of 1s in that position across all bytes in frame

#### Comments

 Catches all I-, 2- and 3-bit and most 4-bit errors



# Two-Dimensional Parity

| 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
| 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
| 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |



# What happens if...

Can detect exactly which bit flipped Can also correct it!

| 0 | 1   | <b>1</b> | 0 | 0 | 1 | 1 | 1 | 0 |
|---|-----|----------|---|---|---|---|---|---|
| 0 | 1   | 1        | 0 | 1 | 1 | 1 | 1 | 0 |
| 0 | 1   | 1        | 0 | 1 | 1 | 1 | 1 | 0 |
| 0 | 1   | 1        | 0 | 0 | 1 | 0 | 0 | 1 |
|   |     |          |   |   |   |   |   |   |
| 0 | 0 ( | 1        | 0 | 0 | 0 | 1 | 1 | 1 |



## What about 2-bit errors?

Can detect the two-bit error

Can't detect a problem here

Can't tell which bits are flipped, so can't correct

| 0 | 1 | <b>8</b> <sup>1</sup> | 0 | 0 | 10 | 1 | 1 | 0 |
|---|---|-----------------------|---|---|----|---|---|---|
| 0 | 1 | 1                     | 0 | 1 | 1  | 1 | 1 | 0 |
| 0 | 1 | 1                     | 0 | 1 | 1  | 1 | 1 | 0 |
| 0 | 1 | 1                     | 0 | 0 | 1  | 0 | 0 | 1 |
|   |   |                       |   |   |    |   |   |   |
| 0 | 0 |                       | 0 | 0 | 0  | 1 | 1 | 1 |



## What about 2-bit errors?

Could be the dotted pair or the dashed pair. Can't correct 2-bit error.

If these four parity bits don't match Which bits could be in error?

|   |   |   |   |   |   | • • |   |                                               |
|---|---|---|---|---|---|-----|---|-----------------------------------------------|
| 0 | 1 | 0 | 0 | 0 | 1 | 1   | 1 | $\left(\begin{array}{c} 0 \end{array}\right)$ |
| 0 | 1 | 1 | 0 | 1 | 1 | 1   | 1 | 0                                             |
| 0 | 1 | 1 | 0 | 1 | 1 | 1   | 1 | 0                                             |
| 0 | 1 | 1 | 0 | 0 | 1 | 0   | 0 | 1                                             |
|   | · |   |   |   |   |     |   |                                               |
| 0 | 0 |   | 0 | 0 | 0 | 1   | 1 | 1                                             |



## What about 3-bit errors?

#### Can detect the three-bit error

But you can't correct (eg if dashed bits got flipped instead of the dotted ones)

| 0 | 1    | <b>5</b> 0 | 0 ( |   | 1   | 10  | 0 |
|---|------|------------|-----|---|-----|-----|---|
| 0 | 1 1  | 0          | 1   | 1 | 1   | 1   | 0 |
| 0 | 1    |            | 1   | 1 | 1   | 1   | 0 |
| 0 | 1 1  | 0          | 0   | 1 | 0   | 0   | 1 |
|   |      |            | 1   |   | ·   |     |   |
| 0 | 0 (1 | 0          | 0 ( | 0 | 1 ( | (1) | 1 |



## What about 4-bit errors?

Are there any 4-bit errors this scheme \*can\* detect?

| 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
| 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
| 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 |
| O | n | 1 | O | O | O | 1 | 1 | 1 |



## What about 4-bit errors?

Can you think of a 4-bit error this scheme can't detect?

| <b>8</b> <sup>1</sup> | 1 | <b>8</b> <sup>1</sup> | 0 | 0 | 1 | 1 | 1 | 0 |
|-----------------------|---|-----------------------|---|---|---|---|---|---|
|                       |   | 1                     |   |   |   |   |   | 0 |
| 81                    | 1 | 10                    | 0 | 1 | 1 | 1 | 1 | 0 |
| 0                     | 1 | 1                     | 0 | 0 | 1 | 0 | 0 | 1 |
| 0                     | 0 | 1                     | 0 | 0 | 0 | 1 | 1 | 1 |

## Internet Checksum

#### Idea

- Add up all the words
- Transmit the sum
- ▶ Use I's complement addition on I6bit codewords
- Example

|   | Codewords:             | <b>-</b> 5 | -3   |
|---|------------------------|------------|------|
| • | I's complement binary: | 1010       | 1100 |

▶ I's complement sum 1000

#### Comments

- Small number of redundant bits
- Easy to implement
- Not very robust
- ▶ Eliminated in IPv6



## IP Checksum

```
u short cksum(u short *buf, int count) {
  register u_long sum = 0;
  while (count--) {
      sum += *buf++;
      if (sum & 0xFFFF0000) {
       /* carry occurred, so wrap around */
              sum &= 0xFFFF;
             sum++;
  return ~ (sum & 0xFFFF);
```

What could cause this check to fail?



# Simplified CRC-like protocol using regular integers

#### Basic idea

- ▶ Both endpoints agree in advance on divisor value C = 3
- ▶ Sender wants to send message M = 10
- ▶ Sender computes X such that C divides IOM + X
- Sender sends codeword W = 10M + X
- ▶ Receiver receives W'and checks whether C divides W'
  - If so, then probably no error
  - If not, then error



# Simplified CRC-like protocol using regular integers

#### Intuition

- If C is large, it's unlikely that bits are flipped exactly to land on another multiple of C
- CRC is vaguely like this, but uses polynomials instead of numbers



# Cyclic Redundancy Check (CRC)

- Given
  - Message M = 10011010
  - Represented as Polynomial M(x)

$$= \| *x^7 + 0 *x^6 + 0 *x^5 + \| *x^4 + \| *x^3 + 0 *x^2 + \| *x + 0$$
  
=  $x^7 + x^4 + x^3 + x$ 

- Select a divisor polynomial C(x) with degree k
  - Example with k = 3:
    - $C(x) = x^3 + x^2 + 1$
    - ▶ Represented as 1101
- Transmit a polynomial P(x) that is evenly divisible by C(x)
  - $P(x) = M(x) * x^k + k$  check bits

How can we determine these k bits?



# Properties of Polynomial Arithmetic

Coefficients are modulo 2

$$(x^3 + x) + (x^2 + x + 1) = ...$$
  
 $...x^3 + x^2 + 1$   
 $(x^3 + x) - (x^2 + x + 1) = ...$   
 $...x^3 + x^2 + 1$  also!

- Addition and subtraction are both xor!
- Need to compute R such that C(x) divides  $P(x) = M(x) \cdot x^k + R(x)$
- ▶ So R(x) = remainder of  $M(x) \cdot x^k / C(x)$ 
  - Will find this with polynomial long division



## CRC - Sender

#### Given

$$M(x) = 10011010 = x^7 + x^4 + x^3 + x$$

$$C(x) = 1101 = x^3 + x^2 + 1$$

#### Steps

- ▶  $T(x) = M(x) * x^k$  (add zeros to increase deg. of M(x) by k)
- Find remainder, R(x), from T(x)/C(x)
- ▶  $P(x) = T(x) R(x) \Rightarrow M(x)$  followed by R(x)

#### Example

$$T(x) = 10011010000$$

$$R(x) = 101$$

$$P(x) = [0011010101]$$



#### CRC - Receiver

- ▶ Receive Polynomial P(x) + E(x)
  - $\blacktriangleright$  E(x) represents errors
  - E(x) = 0, implies no errors
- ▶ Divide (P(x) + E(x)) by C(x)
  - ▶ If result = 0, either
    - No errors (E(x) = 0, and P(x) is evenly divisible by C(x)
    - P(x) + E(x) is exactly divisible by C(x), error will not be detected
  - ▶ If result = I, errors.



# CRC – Example Encoding





# CRC - Example Decoding - No Errors





# CRC – Example Decoding – with Errors



### **CRC** Error Detection

## Properties

- $\blacktriangleright$  Characterize error as E(x)
- $\blacktriangleright$  Error detected unless C(x) divides E(x)
  - $\downarrow$  (i.e., E(x) is a multiple of C(x))



# Example of Polynomial Multiplication

- Multiply
  - ▶ 1101 by 10110
  - $x^3 + x^2 + 1$  by  $x^4 + x^2 + x$





## **CRC** Error Detection

#### What errors can we detect?

- $\blacktriangleright$  All single-bit errors, if  $x^k$  and  $x^0$  have non-zero coefficients
- $\blacktriangleright$  All double-bit errors, if C(x) has at least three terms
- $\blacktriangleright$  All odd bit errors, if C(x) contains the factor (x + 1)
- Any bursts of length < k, if C(x) includes a constant term
- ▶ Most bursts of length  $\ge k$

# Common Polynomials for C(x)

| CRC       | C(x)                                                                                                            |
|-----------|-----------------------------------------------------------------------------------------------------------------|
| CRC-8     | $x^8 + x^2 + x^1 + 1$                                                                                           |
| CRC-10    | $x^{10} + x^9 + x^5 + x^4 + x^1 + 1$                                                                            |
| CRC-12    | $x^{12} + x^{11} + x^3 + x^2 + x^1 + 1$                                                                         |
| CRC-16    | $x^{16} + x^{15} + x^2 + 1$                                                                                     |
| CRC-CCITT | $x^{16} + x^{12} + x^5 + 1$                                                                                     |
| CRC-32    | $x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + 1$ |



## Error Detection vs. Error Correction

#### Detection

- ▶ Pro: Overhead only on messages with errors
- Con: Cost in bandwidth and latency for retransmissions

#### Correction

- Pro: Quick recovery
- ▶ Con: Overhead on all messages

#### What should we use?

- Correction if retransmission is too expensive
- Correction if probability of errors is high
- Detection when retransmission is easy and probability of errors is low

