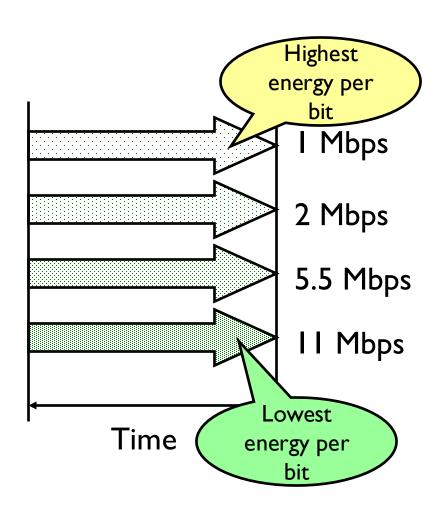
CS/ECE 439: Wireless Networking

MAC Layer – Multi-Rate

What is "Data Rate" really?

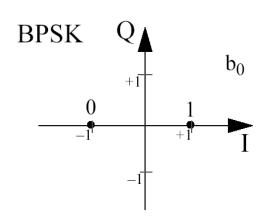
- Number of bits that you transmit per unit time
 - under a fixed energy budget


- ▶ Too many bits/s
 - ▶ Each bit has little energy -> Hi BER

- Too few bits/s
 - Less BER but lower throughput

802.11b – Transmission rates

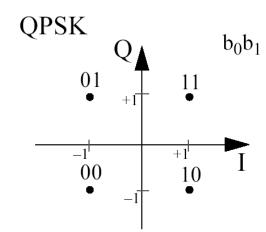
- Optimal rate depends on SINR
 - i.e., interference and current channel conditions

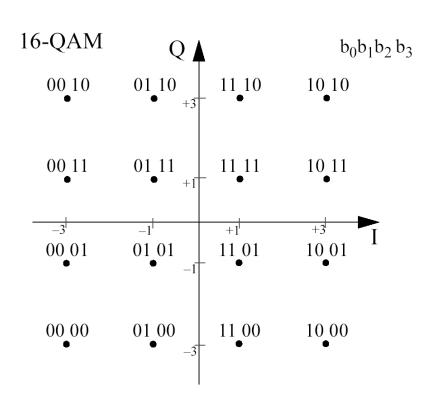


What is Multi-Rate?

- Ability of a wireless card to automatically operate at several different bit-rates
 - ▶ (e.g. I, 2, 5.5, and II Mbps for 802.IIb)
- Part of most existing wireless standards
- Virtually every wireless card in use today employs multi-rate

Example Carrier Modulations

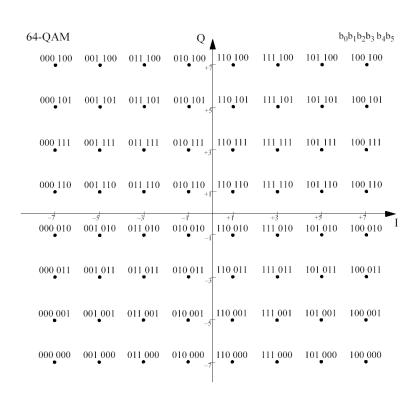



- One bit per symbol
- Made by the carrier and its inverse

Quadrature Phase Shift Keying

- Two bits per symbol
- Uses quadrature carrier in addition to normal carrier
 - ▶ (90° phase shift of carrier)
- ▶ 4 permutations for the inverse or not of the two carriers

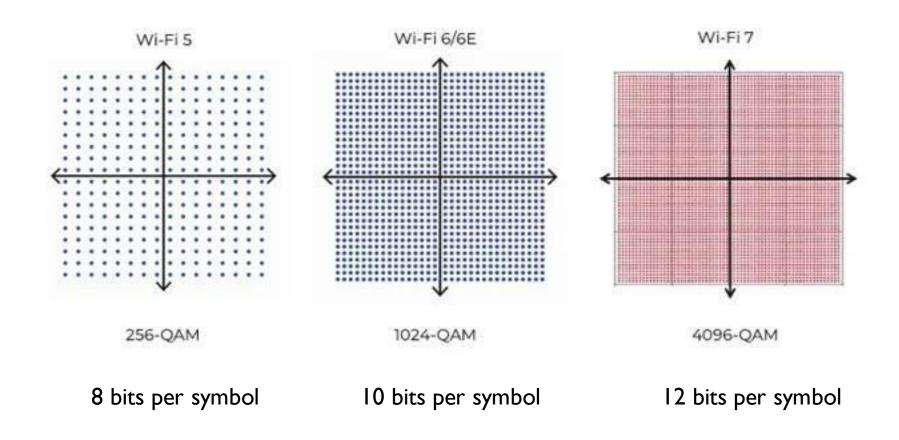
Example Carrier Modulations (cont.)



16 - QuadratureAmplitude Modulation

- 4 bits per symbol
- Also uses quadrature carrier
- ▶ Each carrier is multiplied by +3, +1, -1, or -3
 - ▶ (amplitude modulation)
- I6 possible combinations of the two multiplied carriers

Example Carrier Modulations (cont.)



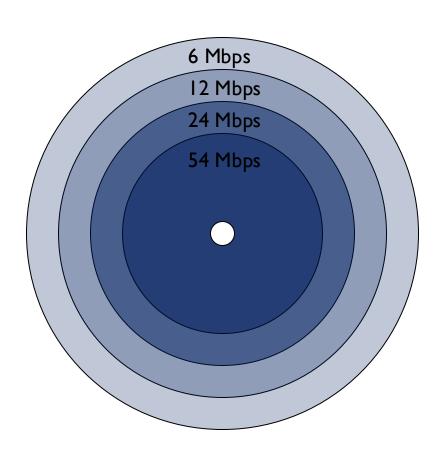
▶ 64 - Quadrature Amplitude Modulation

- ▶ 6 bits per symbol
- Also uses quadrature carrier
- Each carrier is multiplied
 by +7, +5, +3, +1, -1, -3, 5, or -7 (amplitude modulation)
- ▶ 64 possible combinations of the two multiplied carriers

Example Carrier Modulations (cont.)

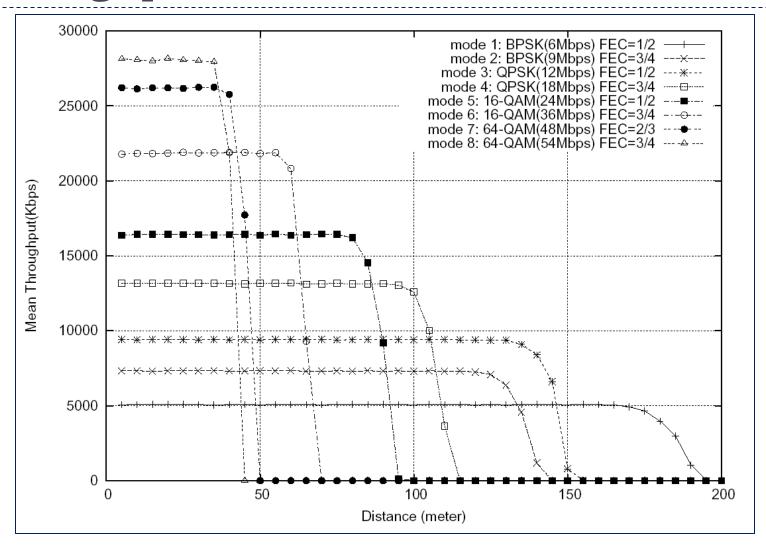
802.11a Rates resulting from Carrier Modulation and Coding

Data rate (Mbits/s)	Modulation	Coding rate (R)	Coded bits per subcarrier (N _{BPSC})	Coded bits per OFDM symbol (N _{CBPS})	Data bits per OFDM symbol (N _{DBPS})	
6	BPSK	1/2	1	48	24	
9	BPSK	3/4	1	48	36	
12	QPSK	1/2	2	96	48	
18	QPSK	3/4	2	96	72	
24	16-QAM	1/2	4	192	96	
36	16-QAM	3/4	4	192	144	
48	64-QAM	2/3	6	288	192	
54	64-QAM	3/4	6	288	216	

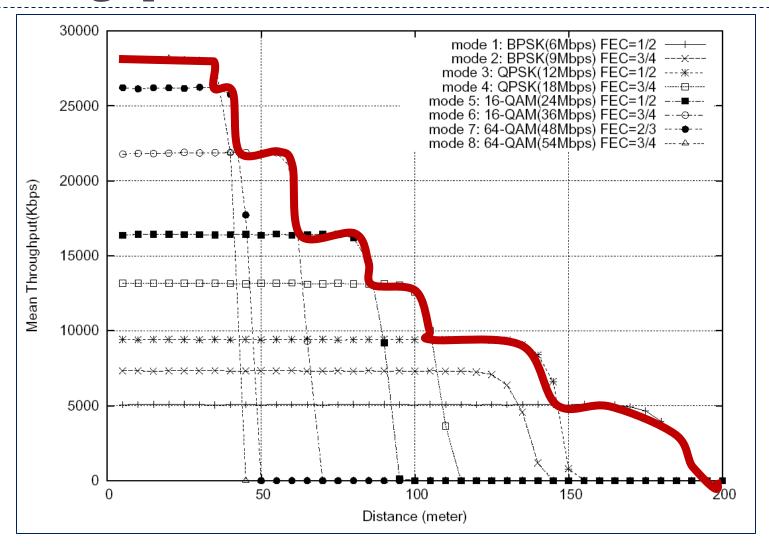

802.11ac Rates resulting from Carrier Modulation and Coding

		Bits	Coding	20 Mhz 40 Mhz		Z	80 Mh	Z	160 Mhz					
MCS	Modulation	per	Ratio	800	400	800	400	800	400	800	400 ns			
		symbol		ns	ns	ns	ns	ns	ns	ns				
1 Spatia	Data Rates(Mbps)													
MCS0	BPSK	1	1/2	6.5	7.2	13.5	15.0	29.3	32.5	58.5	65.0			
MCS1	QPSK	2	1/2	13.0	14.4	27.0	30.0	58.5	65.0	117.0	130.0			
MCS2	QPSK	2	3/4	19.5	21.7	40.5	45.0	87.8	97.5	175.5	195.0			
MCS3	16-QAM	4	1/2	26.0	28.9	54.0	60.0	117.0	130.0	234.0	260.0			
MCS4	16-QAM	4	3/4	39.0	43.3	81.0	90.0	175.5	195.0	351.0	390.0			
MCS5	64-QAM	6	2/3	52.0	57.8	108.0	120.0	234.0	260.0	468.0	520.0			
MCS6	64-QAM	6	3/4	58.5	65.0	121.5	135.0	263.3	292.5	526.5	585.0			
MCS7	64-QAM	6	5/6	65.0	72.2	135.0	150.0	292.5	325.0	585.0	650.0			
MCS8	256-QAM	8	3/4	78.0	86.7	162.0	180.0	351.0	390.0	702.0	780.0			
MCS9	256-QAM	8	5/6	N/A	N/A	180.0	200.0	390.0	433.3	780.0	888.7			
8 Spatia	8 Spatial streams					Data Rates(Mbps)								
MCS0	BPSK	1	1/2	52.0	57.8	108.0	120.0	234.0	260.0	468.0	520.0			
MCS1	QPSK	2	1/2	104.0	115.6	216.0	240.0	468.0	520.0	936.0	1040			
MCS2	QPSK	2	3/4	156.0	173.3	324.0	360.0	702.0	780.0	1404	1560			
MCS3	16-QAM	4	1/2	208.0	231.1	432.0	480.0	936.0	1040	1872	2080			
MCS4	16-QAM	4	3/4	312.0	346.7	648.0	720.0	1404	1560	2808	3120			
MCS5	64-QAM	6	2/3	416.0	482.2	884.0	960.0	1872	2080	3744	4160			
MCS6	64-QAM	6	3/4	468.0	520.0	972.0	1080	1200	2340	4120	4680			
MCS7	64-QAM	6	5/6	520	577.8	1080	1200	2340	2600	4680	5200			
MCS8	256-QAM	8	3/4	624.0	693.3	1296	1440	2808	3120	5616	6240			
MCS9	256-QAM	8	5/6	N/A	N/A	1440	1600	3120	3466	6240	6933			

802.11ax Rates resulting from Carrier Modulation and Coding

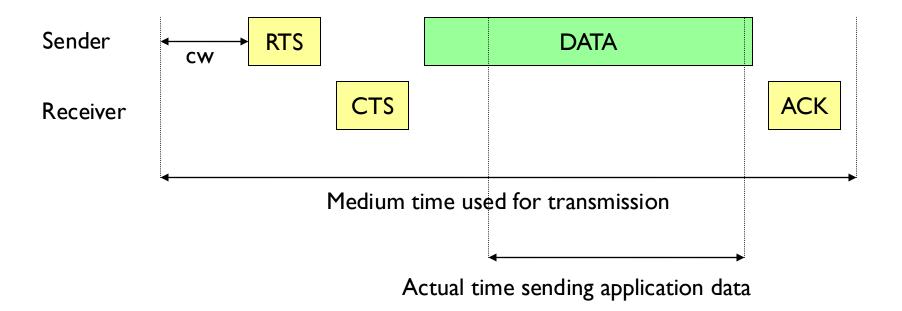

				OFDM (802.11ax)											
MCS	Spatial	Modulation	Coding	20MHz		40MHz		80MHz			160MHz				
Index	Stream			0.8µs GI	1.6µs GI	3.2µs GI	0.8µs GI	1.6µs GI	3.2µs GI	0.8µs GI	1.6µs GI	3.2µs GI	0.8µs GI	1.6µs GI	3.2µs GI
0	1	BPSQ	1/2	8.6	8.1	7.3	17.2	16.3	14.6	36.0	34.0	30.6	72.1	68.1	61.3
1	1	QPSK	1/2	17.2	16.3	14.6	34.4	32.5	29.3	72.1	68.1	61.3	144.1	136.1	122.5
2	1	QPSK	3/4	25.8	24.4	21.9	51.6	48.8	43.9	108.1	102.1	91.9	216.2	204.2	183.8
3	1	16-QAM	1/2	34.4	32.5	29.3	68.8	65.0	58.5	144.1	136.1	122.5	288.2	272.2	245.0
4	1	16-QAM	3/4	51.6	48.8	43.9	103.2	97.5	87.8	216.2	204.2	183.8	432.4	408.3	367.5
5	1	64-QAM	2/3	68.8	65.0	58.5	137.6	130.0	117.0	288.2	272.2	245.0	576.5	544.4	490.0
6	1	64-QAM	3/4	77.4	73.1	65.8	154.9	146.3	131.6	324.3	306.3	275.6	648.5	612.5	551.3
7	1	64-QAM	5/6	86.0	81.3	73.1	172.1	162.5	146.3	360.3	340.3	306.3	720.6	680.6	612.5
8	1	256-QAM	3/4	103.2	97.5	87.8	206.5	195.0	175.5	432.4	408.3	367.5	864.7	816.7	735.0
9	1	256-QAM	5/6	114.7	108.3	97.5	229.4	216.7	195.0	480.4	453.7	408.3	960.8	907.4	816.7
10	1	1024-QAM	3/4	129.0	121.9	109.7	258.1	243.8	219.4	540.4	510.4	459.4	1080.9	1020.8	918.8
11	1	1024-QAM	5/6	143.4	135.4	121.9	286.8	270.8	243.8	600.5	567.1	510.4	1201.0	1134.3	1020.8
0	2	BPSQ	1/2	17.2	16.3	14.6	34.4	32.5	29.3	72.1	68.1	61.3	144.1	136.1	122.5
1	2	QPSK	1/2	34.4	32.5	29.3	68.8	65.0	58.5	144.1	136.1	122.5	288.2	272.2	245.0
2	2	QPSK	3/4	51.6	48.8	43.9	103.2	97.5	87.8	216.2	204.2	183.8	432.4	408.3	367.5
3	2	16-QAM	1/2	68.8	65.0	58.5	137.6	130.0	117.0	288.2	272.2	245.0	576.5	544.4	490.0
4	2	16-QAM	3/4	103.2	97.5	87.8	206.5	195.0	175.5	432.4	408.3	367.5	864.7	816.7	735.0
5	2	64-QAM	2/3	137.6	130.0	117.0	275.3	260.0	234.0	576.5	544.4	490.0	1152.9	1088.9	980.0
6	2	64-QAM	3/4	154.9	146.3	131.6	309.7	292.5	263.3	648.5	612.5	551.3	1297.1	1225.0	1102.5
7	2	64-QAM	5/6	172.1	162.5	146.3	344.1	325.0	292.5	720.6	680.6	612.5	1441.2	1361.1	1225.0
8	2	256-QAM	3/4	206.5	195.0	175.5	412.9	390.0	351.0	864.7	816.7	735.0	1729.4	1633.3	1470.0
9	2	256-QAM	5/6	229.4	216.7	195.0	458.8	433.3	390.0	960.8	907.4	816.7	1921.6	1814.8	1633.3
10	2	1024-QAM	3/4	258.1	243.8	219.4	516.2	487.5	438.8	1080.9	1020.8	918.8	2161.8	2041.7	1837.5
11	2	1024-QAM	5/6	286.8	270.8	243.8	573.5	541.7	487.5	1201.0	1134.3	1020.8	2402.0	2268.5	2041.7
0	3	BPSQ	1/2	25.8	24.4	21.9	51.6	48.8	43.9	108.1	102.1	91.9	216.2	204.2	183.8
1	3	QPSK	1/2	51.6	48.8	43.9	103.2	97.5	87.8	216.2	204.2	183.8	432.4	408.3	367.5
2	3	QPSK	3/4	77.4	73.1	65.8	154.9	146.3	131.6	324.3	306.3	275.6	648.5	612.5	551.3
3	3	16-QAM	1/2	103.2	97.5	87.8	206.5	195.0	175.5	432.4	408.3	367.5	864.7	816.7	735.0
4	3	16-QAM	3/4	154.9	146.3	131.6	309.7	292.5	263.3	648.5	612.5	551.3	1297.1	1225.0	1102.5
5	3	64-QAM	2/3	206.5	195.0	175.5	412.9	390.0	351.0	864.7	816.7	735.0	1729.4	1633.3	1470.0
6	3	64-QAM	3/4	232.3	219.4	197.4	464.6	438.8	394.9	972.8	918.8	826.9	1945.6	1837.5	1653.8
7	3	64-QAM	5/6	258.1	243.8	219.4	516.2	487.5	438.8	1080.9	1020.8	918.8	2161.8	2041.7	1837.5
8	3	256-QAM	3/4	309.7	292.5	263.3	619.4	585.0	526.5	1297.1	1225.0	1102.5	2594.1	2450.0	2205.0
9	3	256-QAM	5/6	344.1	325.0	292.5	688.2	650.0	585.0	1441.2	1361.1	1225.0	2882.4	2722.2	2450.0
10	3	1024-QAM	3/4	387.1	365.6	329.1	774.3	731.3	658.1	1621.3	1531.3	1378.1	3242.6	3062.5	2756.3
11	3	1024-QAM	5/6	430.1	406.3	365.6	860.3	812.5	731.3	1801.5	1701.4	1531.3	3602.9	3402.8	3062.5

Advantage of Multi-Rate?

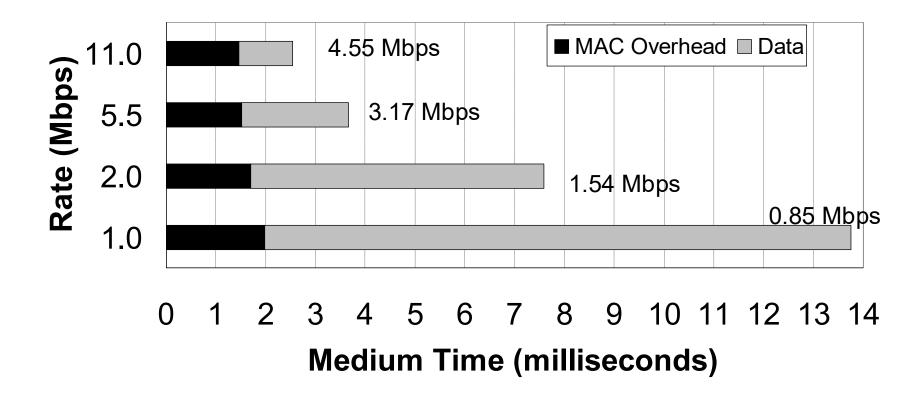


- Direct relationship between communication rate and the channel quality required for that rate
- As distance increases, channel quality decreases
 - Tradeoff between communication range and link speed
- Multi-rate provides flexibility to meet both consumer demands

Throughput vs. Distance for 802.11a



Throughput vs. Distance for 802.11a



802.11 Frame Exchange Overhead

Not all time is spent sending actual data

802.11b Frame Exchange Duration

Medium Time consumed to transmit 1500 byte packet

Multi-rate Frame in 802.11b

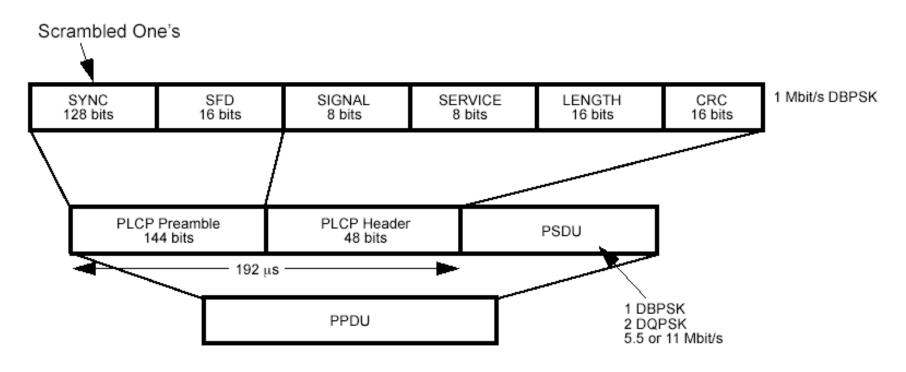
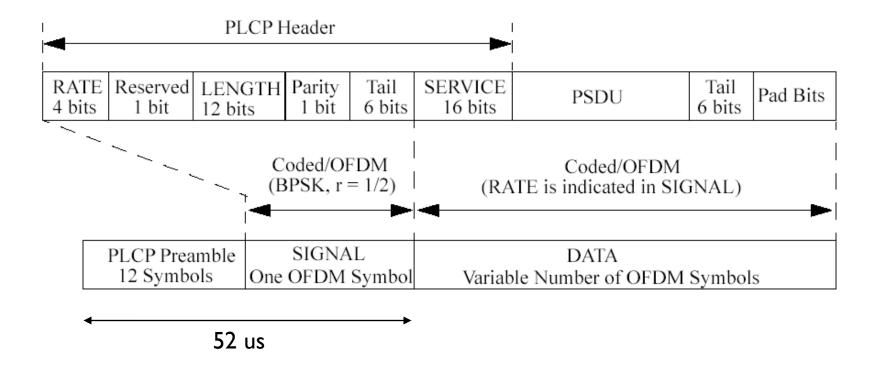
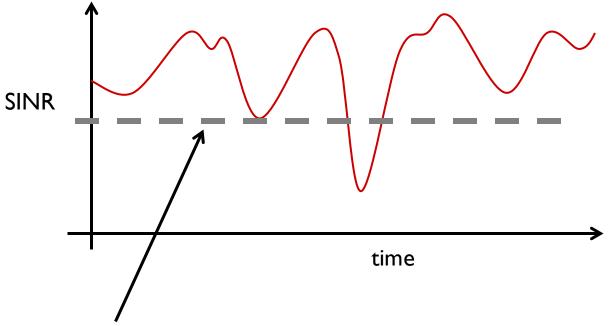
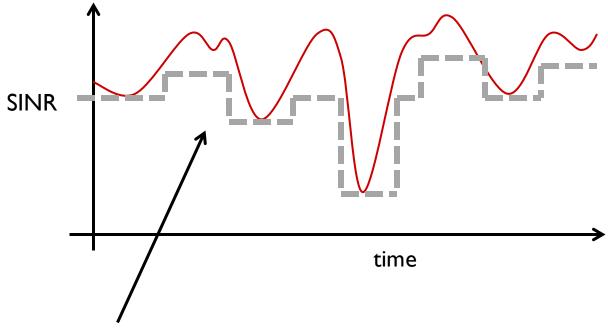




Figure 127-Long PLCP PPDU format

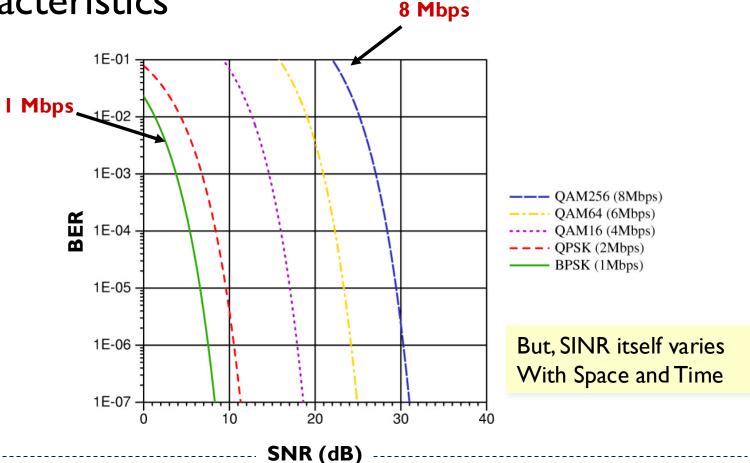
Multi-rate Frame in 802.11a


How do we choose modulation rates?

- Estimate a value of SINR
- Choose a corresponding rate that would transmit packets correctly most of the times
- ▶ Failure in some cases of fading
 - Live with it

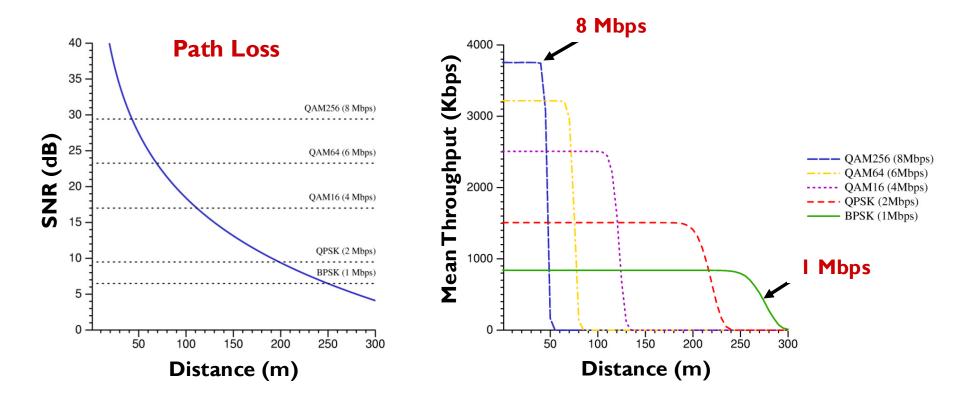
Adaptive Rate-Control

- Observe the current value of SINR
 - Use as indicator of near-future value
- Choose corresponding rate of modulation
- Repeat
 - Controls rate if channel conditions have changed

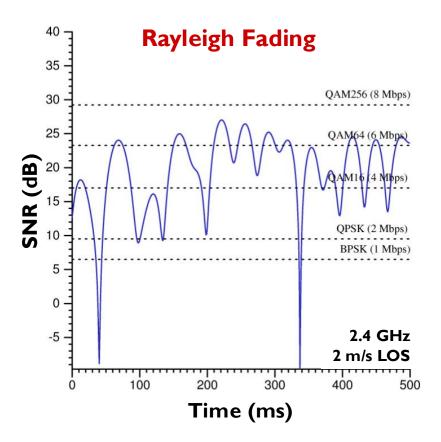


Seems simple, but ...

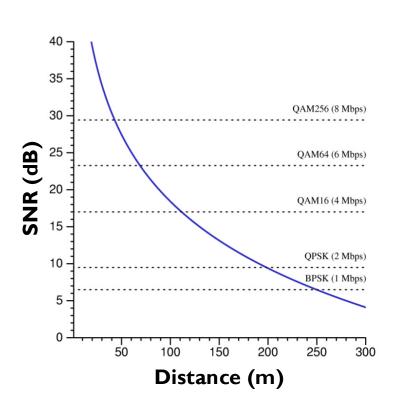
- Rate control has variety of implications
 - Any single MAC protocol solves part of the puzzle
- Important to understand e2e implications
 - Does routing protocols get affected?
 - Does TCP get affected?
- Good to make a start at the MAC layer
 - ARF
 - ▶ RBAR
 - OAR

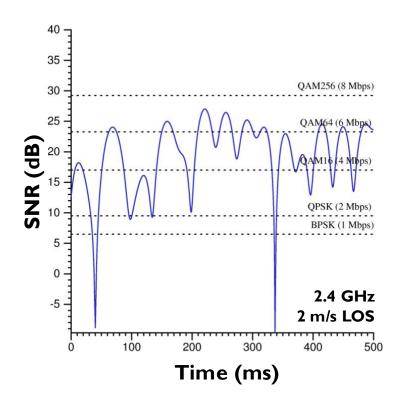

Problem

Modulation schemes have different error characteristics
8 Mbps

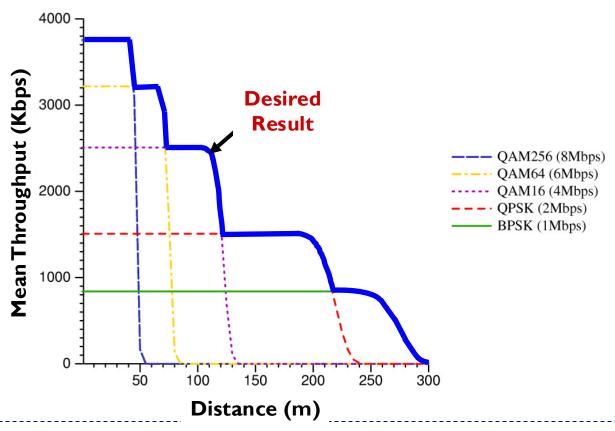

Impact

▶ Large-scale variation with distance (Path loss)




Impact

Small-scale variation with time (Fading)


Which modulation scheme is best?

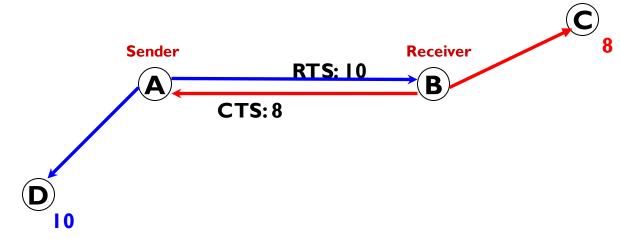
Answer → Rate Adaptation

 Dynamically choose the best modulation scheme for the channel conditions

Design Issues

- How frequently should we adapt the rate?
 - Signal can vary rapidly depending on
 - carrier frequency
 - node speed
 - interference
 - > etc.
- For conventional hardware at pedestrian speeds, rate adaptation is feasible on a perpacket basis

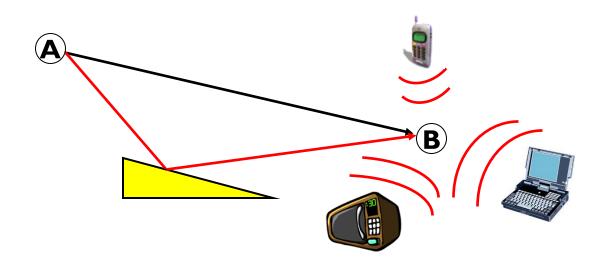
Adaptation → At Which Layer?


- Cellular networks
 - Adaptation at the physical layer
- ▶ Impractical for 802.11 in WLANs

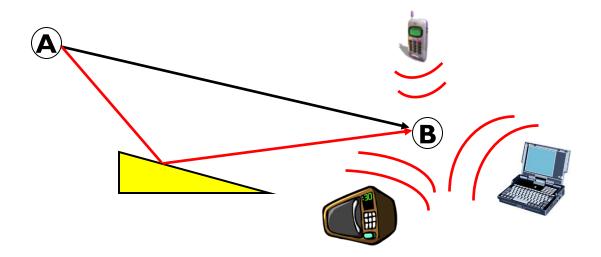
Adaptation → At Which Layer?

- Cellular networks
 - Adaptation at the physical layer
- ▶ Impractical for legacy 802.11 in WLANs ←

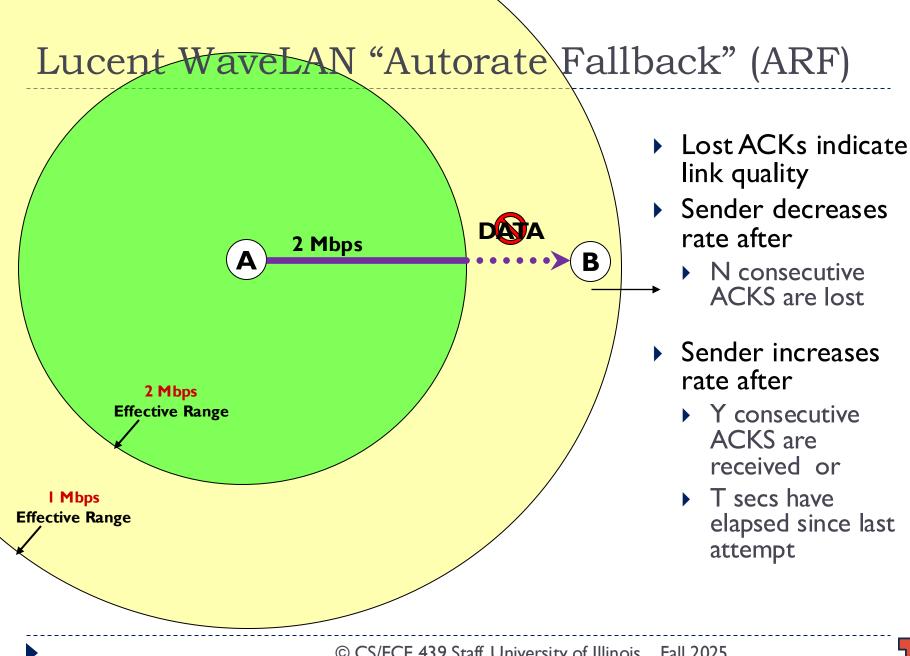
RTS/CTS requires that the rate be known in advance



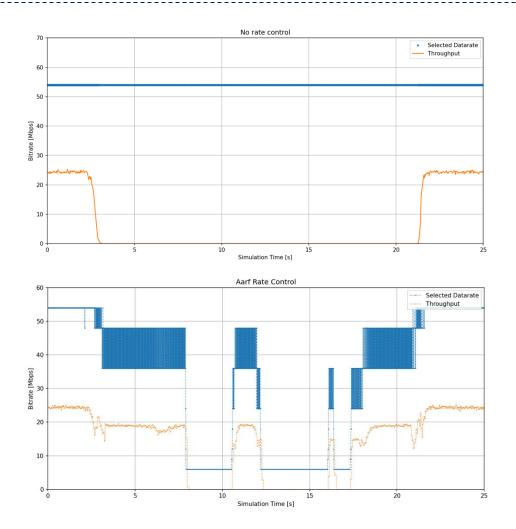
▶ For WLANs, rate adaptation is best handled at the MAC layer


Why?

Who should select the data rate?

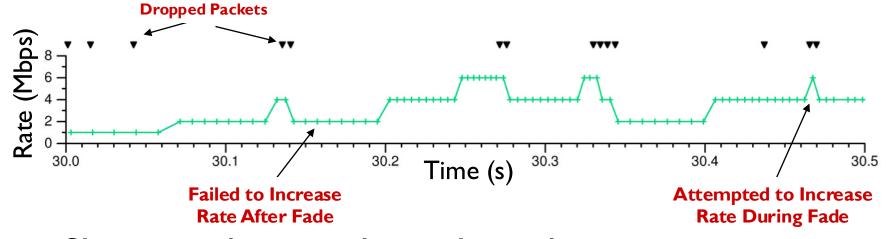

Who should select the data rate?

- Collision is at the receiver
- ▶ Channel conditions are only known at the receiver
 - ▶ SS, interference, noise, BER, etc.



▶ The receiver is best positioned to select data rate

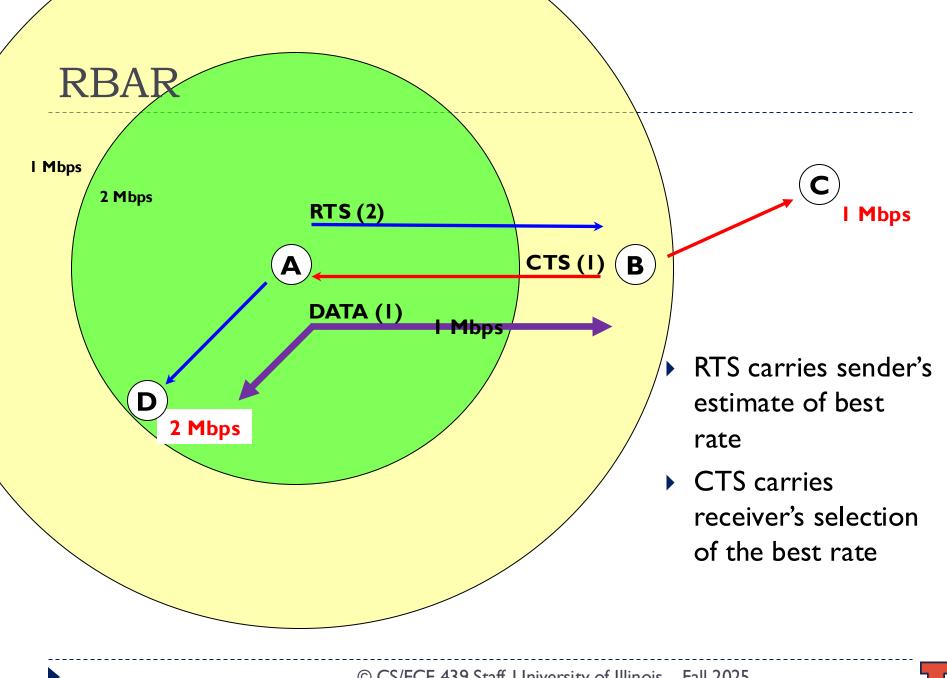


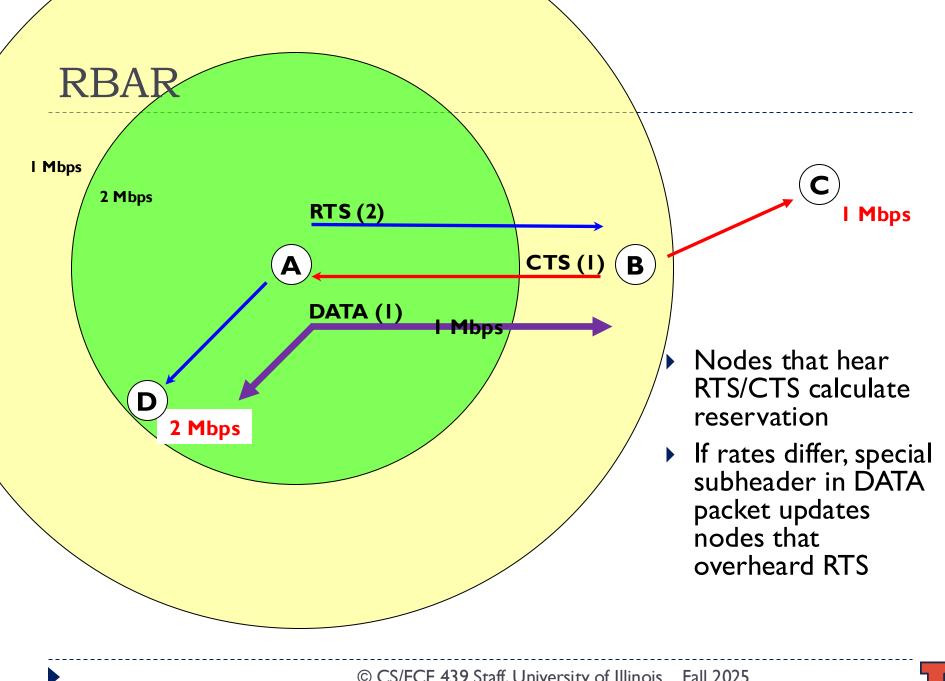


Autorate Fallback Example

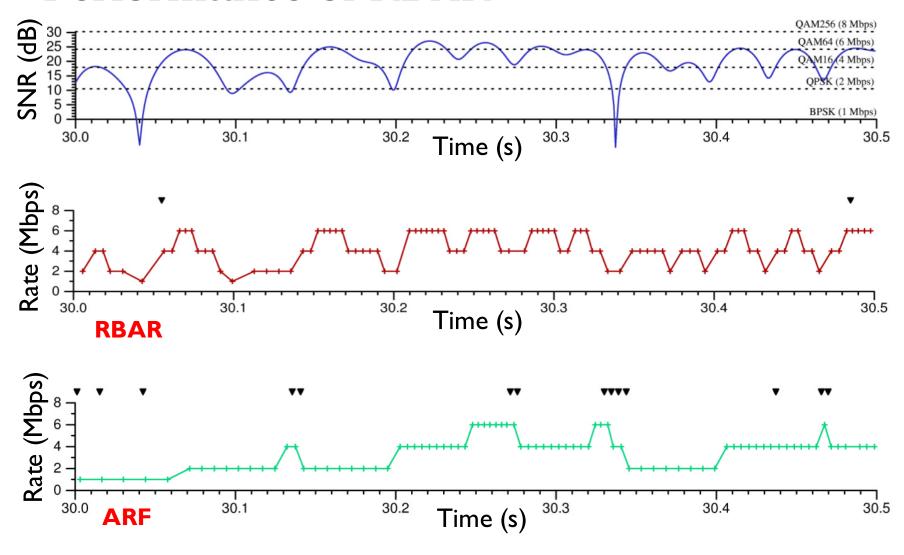
Performance of ARF

- Slow to adapt to channel conditions
- Choice of N,Y,T may not be best for all situations




Receiver-Based Autorate (RBAR)

- Move the rate adaptation mechanism to the receiver
 - Better channel quality information = better rate selection


- Utilize the RTS/CTS exchange to
 - Provide the receiver with a signal to sample (RTS)
 - Carry feedback (data rate) to the sender (CTS)

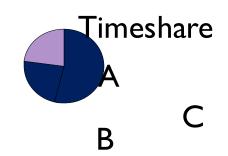
Performance of RBAR

Implementation into 802.11n

- Reservation Subheader (RSH) —
- Encode data rate and packet length in duration field of frames
 - Rate can be changed by receiver
 - Length can be used to select rate
 - Reservations are calculated using encoded rate and length
- ▶ New DATA frame type with Reservation Subheader (RSH)
 - Reservation fields protected by additional frame check sequence
 - ▶ RSH is sent at same rate as RTS/CTS
- New frame is only needed when receiver suggests rate change

RBAR Summary

- Modulation schemes have different error characteristics
- Significant performance improvement may be achieved by MAC-level adaptive modulation
- Receiver-based schemes may perform best
 - Proposed Receiver-Based Auto-Rate (RBAR) protocol
 - Implementation into 802.11
- Future thoughts ...
 - RBAR without use of RTS/CTS
 - RBAR based on the size of packets
 - ▶ Routing protocols for networks with variable rate links


Can we do better?

- Consider the situation below
 - ARF?
 - ▶ RBAR?

Motivation

- What if A and B are both at 56Mbps, and C is often at 2Mbps?
- Slowest node gets the most absolute time on channel?

Throughput Fairness vs Temporal Fairness

MAC Layer Fairness Models

Per Packet Fairness

If two adjacent senders continuously are attempting to send packets, they should each send the same number of packets

▶ Temporal Fairness

- If two adjacent senders are continuously attempting to send packets, they should each be able to send for the same amount of medium time.
- In single rate networks these are the SAME!

Temporal Fairness Example

	802.11 Packet Fairness	OAR Temporal Fairness
11 Mbps Link	0.896	3.533
1 Mbps Link	0.713	0.450
Total Throughput	1.609	3.983

Per Packet Fairness 11 Mbps I Mbps Temporal Fairness 11 Mbps I Mbps

Opportunistic Scheduling

Goal

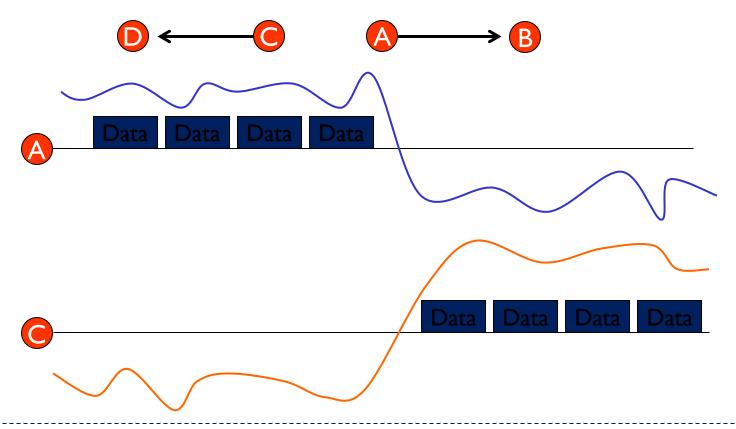
 Exploit short-time-scale channel quality variations to increase throughput

Issue

Maintaining temporal fairness (time share) of each node

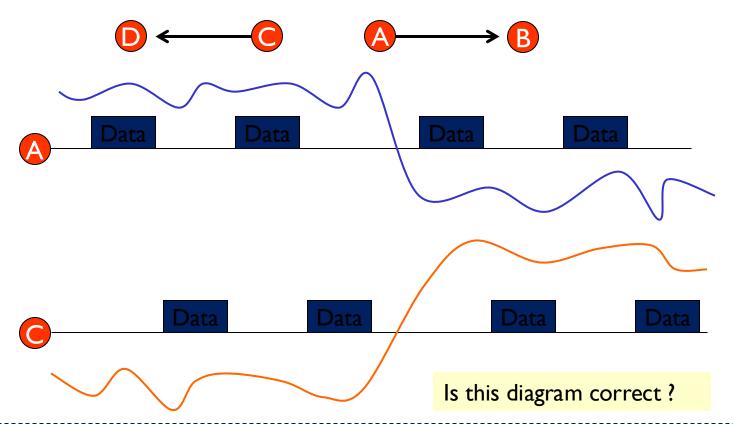
Challenge

Channel info available only upon transmission

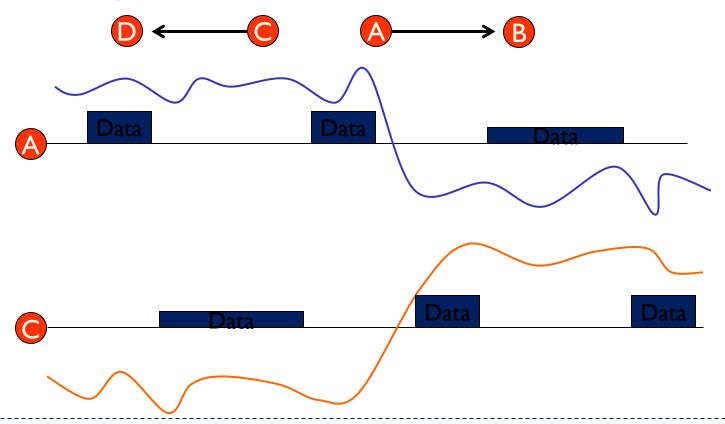

Opportunistic Auto-Rate (OAR)

- In many networks, there is intrinsic diversity
 - Exploiting this diversity can offer benefits
 - Transmit more when channel quality is high
 - else, free the channel quickly
- RBAR does not exploit this diversity
 - It optimizes per-link throughput

OAR Idea


▶ Basic Idea

- ▶ Bad channel: transmit minimum number of packets
- ▶ Good channel: transmit as much as possible


Why is OAR better?

- ▶ 802.11 alternates between transmitters A and C
 - Why is that bad

Why is OAR better?

- ▶ Bad channel reduces SINR → increases transmit time
 - Fewer packets can be delivered

OAR Protocol Steps

- Transmitter estimates current channel
 - Can use estimation algorithms
 - ► Can use RBAR, etc.
- ▶ If channel better than base rate (2 Mbps)
 - Transmit proportionally more packets
 - \triangleright e.g., if channel can support 11 Mbps, transmit (11/2 ~ 5) pkts
- OAR upholds temporal fairness
 - ▶ Each node gets same duration to transmit
 - ▶ Sacrifices throughput fairness → the network gains!!

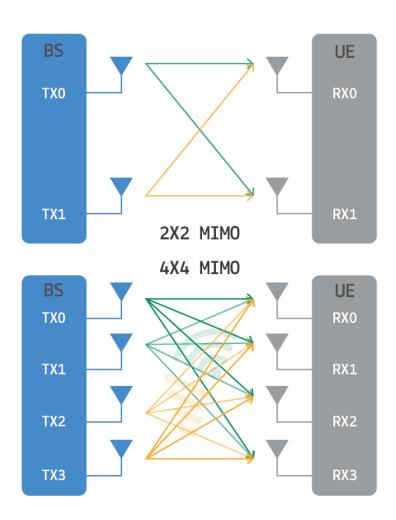
OAR Protocol

Protocol	Channel Condition										
	В	AD	ME	DIUM	GOOD						
	Pkts	Rate	Pkts	Rate	Pkts	Rate					
802.11	1	2	1	2	1	2					
802.11b	1	2	1	5.5	1	11					
OAR	1	2	3	5.5	5	11					

▶ Rates in IEEE 802.11b: 2, 5.5, and 11 Mbps

Summary

- Rate control can be useful
 - When adapted to channel fluctuations (RBAR)
 - When opportunistically selecting transmitters (OAR)
- Benefits maximal when
 - Channel conditions vary widely in time and space
- Correlation in fluctuation can offset benefits
 - OAR may show negligible gains

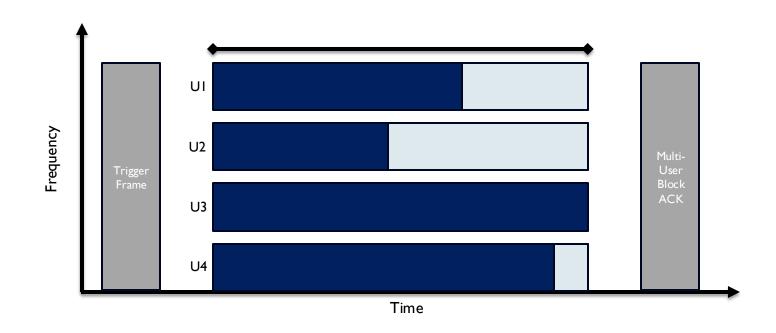

802.11n Rate Control

		Bits	Coding	20 Mhz		40 Mhz		80 Mhz		160 M	hz		
MCS	Modulation	per	Ratio 800 400		400	800	400	800	800 400		400 ns		
		symbol		ns	ns	ns	ns	ns	ns	ns			
1 Spatial Stream					Data Rates(Mbps)								
MCS0	BPSK	1	1/2	6.5	7.2	13.5	15.0	29.3	32.5	58.5	65.0		
MCS1	QPSK	2	1/2	13.0	14.4	27.0	30.0	58.5	65.0	117.0	130.0		
MCS2	QPSK	2	3/4	19.5	21.7	40.5	45.0	87.8	97.5	175.5	195.0		
MCS3	16-QAM	4	1/2	26.0	28.9	54.0	60.0	117.0	130.0	234.0	260.0		
MCS4	16-QAM	4	3/4	39.0	43.3	81.0	90.0	175.5	195.0	351.0	390.0		
MCS5	64-QAM	6	2/3	52.0	57.8	108.0	120.0	234.0	260.0	468.0	520.0		
MCS6	64-QAM	6	3/4	58.5	65.0	121.5	135.0	263.3	292.5	526.5	585.0		
MCS7	64-QAM	6	5/6	65.0	72.2	135.0	150.0	292.5	325.0	585.0	650.0		
MCS8	256-QAM	8	3/4	78.0	86.7	162.0	180.0	351.0	390.0	702.0	780.0		
MCS9	256-QAM	8	5/6	N/A	N/A	180.0	200.0	390.0	433.3	780.0	888.7		
8 Spatia	al streams			Data Rates(Mbps)									
MCS0	BPSK	1	1/2	52.0	57.8	108.0	120.0	234.0	260.0	468.0	520.0		
MCS1	QPSK	2	1/2	104.0	115.6	216.0	240.0	468.0	520.0	936.0	1040		
MCS2	QPSK	2	3/4	156.0	173.3	324.0	360.0	702.0	780.0	1404	1560		
MCS3	16-QAM	4	1/2	208.0	231.1	432.0	480.0	936.0	1040	1872	2080		
MCS4	16-QAM	4	3/4	312.0	346.7	648.0	720.0	1404	1560	2808	3120		
MCS5	64-QAM	6	2/3	416.0	482.2	884.0	960.0	1872	2080	3744	4160		
MCS6	64-QAM	6	3/4	468.0	520.0	972.0	1080	1200	2340	4120	4680		
MCS7	64-QAM	6	5/6	520	577.8	1080	1200	2340	2600	4680	5200		
MCS8	256-QAM	8	3/4	624.0	693.3	1296	1440	2808	3120	5616	6240		
MCS9	256-QAM	8	5/6	N/A	N/A	1440	1600	3120	3466	6240	6933		

802.11n Rate Control

- What is the best configuration?
 - > 2x2?
 - ▶ 4x4?

- Even more complex with ac or ax
 - 6x6?



802.11ac Rate Control

		Modulation	Coding	OFDM (802.11ax)											
MCS Spatia	Spatial			20MHz			40MHz			80MHz			160MHz		
Index	Stream			0.8µs GI	1.6µs GI	3.2µs GI	0.8µs GI	1.6µs GI	3.2µs GI	0.8µs GI	1.6µs GI	3.2µs GI	0.8µs GI	1.6µs GI	3.2µs GI
0	1	BPSQ	1/2	8.6	8.1	7.3	17.2	16.3	14.6	36.0	34.0	30.6	72.1	68.1	61.3
1	1	QPSK	1/2	17.2	16.3	14.6	34.4	32.5	29.3	72.1	68.1	61.3	144.1	136.1	122.5
2	1	QPSK	3/4	25.8	24.4	21.9	51.6	48.8	43.9	108.1	102.1	91.9	216.2	204.2	183.8
3	1	16-QAM	1/2	34.4	32.5	29.3	68.8	65.0	58.5	144.1	136.1	122.5	288.2	272.2	245.0
4	1	16-QAM	3/4	51.6	48.8	43.9	103.2	97.5	87.8	216.2	204.2	183.8	432.4	408.3	367.5
5	1	64-QAM	2/3	68.8	65.0	58.5	137.6	130.0	117.0	288.2	272.2	245.0	576.5	544.4	490.0
6	1	64-QAM	3/4	77.4	73.1	65.8	154.9	146.3	131.6	324.3	306.3	275.6	648.5	612.5	551.3
7	1	64-QAM	5/6	86.0	81.3	73.1	172.1	162.5	146.3	360.3	340.3	306.3	720.6	680.6	612.5
8	1	256-QAM	3/4	103.2	97.5	87.8	206.5	195.0	175.5	432.4	408.3	367.5	864.7	816.7	735.0
9	1	256-QAM	5/6	114.7	108.3	97.5	229.4	216.7	195.0	480.4	453.7	408.3	960.8	907.4	816.7
10	1	1024-QAM	3/4	129.0	121.9	109.7	258.1	243.8	219.4	540.4	510.4	459.4	1080.9	1020.8	918.8
11	1	1024-QAM	5/6	143.4	135.4	121.9	286.8	270.8	243.8	600.5	567.1	510.4	1201.0	1134.3	1020.8
0	2	BPSQ	1/2	17.2	16.3	14.6	34.4	32.5	29.3	72.1	68.1	61.3	144.1	136.1	122.5
1	2	QPSK	1/2	34.4	32.5	29.3	68.8	65.0	58.5	144.1	136.1	122.5	288.2	272.2	245.0
2	2	QPSK	3/4	51.6	48.8	43.9	103.2	97.5	87.8	216.2	204.2	183.8	432.4	408.3	367.5
3	2	16-QAM	1/2	68.8	65.0	58.5	137.6	130.0	117.0	288.2	272.2	245.0	576.5	544.4	490.0
4	2	16-QAM	3/4	103.2	97.5	87.8	206.5	195.0	175.5	432.4	408.3	367.5	864.7	816.7	735.0
5	2	64-QAM	2/3	137.6	130.0	117.0	275.3	260.0	234.0	576.5	544.4	490.0	1152.9	1088.9	980.0
6	2	64-QAM	3/4	154.9	146.3	131.6	309.7	292.5	263.3	648.5	612.5	551.3	1297.1	1225.0	1102.5
7	2	64-QAM	5/6	172.1	162.5	146.3	344.1	325.0	292.5	720.6	680.6	612.5	1441.2	1361.1	1225.0
8	2	256-QAM	3/4	206.5	195.0	175.5	412.9	390.0	351.0	864.7	816.7	735.0	1729.4	1633.3	1470.0
9	2	256-QAM	5/6	229.4	216.7	195.0	458.8	433.3	390.0	960.8	907.4	816.7	1921.6	1814.8	1633.3
10	2	1024-QAM	3/4	258.1	243.8	219.4	516.2	487.5	438.8	1080.9	1020.8	918.8	2161.8	2041.7	1837.5
11	2	1024-QAM	5/6	286.8	270.8	243.8	573.5	541.7	487.5	1201.0	1134.3	1020.8	2402.0	2268.5	2041.7
0	3	BPSQ	1/2	25.8	24.4	21.9	51.6	48.8	43.9	108.1	102.1	91.9	216.2	204.2	183.8
1	3	QPSK	1/2	51.6	48.8	43.9	103.2	97.5	87.8	216.2	204.2	183.8	432.4	408.3	367.5
2	3	QPSK	3/4	77.4	73.1	65.8	154.9	146.3	131.6	324.3	306.3	275.6	648.5	612.5	551.3
3	3	16-QAM	1/2	103.2	97.5	87.8	206.5	195.0	175.5	432.4	408.3	367.5	864.7	816.7	735.0
4	3	16-QAM	3/4	154.9	146.3	131.6	309.7	292.5	263.3	648.5	612.5	551.3	1297.1	1225.0	1102.5
5	3	64-QAM	2/3	206.5	195.0	175.5	412.9	390.0	351.0	864.7	816.7	735.0	1729.4	1633.3	1470.0
6	3	64-QAM	3/4	232.3	219.4	197.4	464.6	438.8	394.9	972.8	918.8	826.9	1945.6	1837.5	1653.8
7	3	64-QAM	5/6	258.1	243.8	219.4	516.2	487.5	438.8	1080.9	1020.8	918.8	2161.8	2041.7	1837.5
8	3	256-QAM	3/4	309.7	292.5	263.3	619.4	585.0	526.5	1297.1	1225.0	1102.5	2594.1	2450.0	2205.0
9	3	256-QAM	5/6	344.1	325.0	292.5	688.2	650.0	585.0	1441.2	1361.1	1225.0	2882.4	2722.2	2450.0
10	3	1024-QAM	3/4	387.1	365.6	329.1	774.3	731.3	658.1	1621.3	1531.3	1378.1	3242.6	3062.5	2756.3
11	3	1024-QAM	5/6	430.1	406.3	365.6	860.3	812.5	731.3	1801.5	1701.4	1531.3	3602.9	3402.8	3062.5

802.11ac Rate Control

- OFDMA needs to allocate the Rus without RTS/CTS
 - Typically proprietary algorithms

