### CS/ECE 439: Wireless Networking

MAC Layer - Power!





### **Energy Conservation Techniques**

- Wi-Fi devices consume significant amounts of energy when idle
  - ▶ Idle > IW
- Conservation Approach: Device suspension (sleep)
  - Reduced energy consumption
    - ▶ Sleep ~ 0.05W
  - Suspended communication capabilities
    - Buffer overflow
    - Wasted bandwidth
    - Lost messages
    - If all nodes are asleep, no one can communicate!



# Communication Device Suspension

#### Goal

- Remain awake when there is active communication
- Otherwise, suspend
- Adapt the sleep duration to reflect the communication patterns of the application

#### Ideal

- Sleep whenever there is no data to receive from the base station
- Wake up for any incoming receptions

### Communication Device Suspension

#### Problems

- How can a sender differentiate between a suspended node and a node that has gone away?
  - ▶ Suspended receiver ⇒ buffer packet
  - ▶ Confused sender ⇒ dropped packet, extra energy consumption
- How can a suspended node know there is communication for it?
  - $\blacktriangleright$  Wake up too soon  $\Rightarrow$  waste energy
  - Wake up too late ⇒ delay/miss packets

### Communication Device Suspension

### Approach

Ensure overlap between sender's and receiver's awake times

#### Protocols

- Triggered Resume
- Periodic Resume
  - Synchronous
  - Asynchronous

### Approach

- Use a second control channel (second radio)
  - Sender transmits RTS or beacon messages in control channel
  - Receiver replies in control channel and turns on main channel
- Main channel is only used for data
- Second channel
  - Must consume less energy than the main channel
  - Must not interfere with the main channel
  - Ex: BLE, ZigBee, RFID, 915Mhz



- ▶ Approach − Data only − PAMAS
  - Data channel
    - Power off radio when data is destined to a different node
  - Control channel
    - Probe neighbors to find longest remaining transfer



#### Dual radio

- Low duty cycle paging channel to wake up a neighboring node
- Use separate radio for the paging channel to avoid interference with regular data forwarding
- Trades off energy savings for setup latency



#### Dual radio



### Triggered Resume – 802.11ba



### Challenges

- ▶ Two radios are more complex than one
- Channel characteristics may not be the same for both radios
  - A successful RTS on the control channel does not guarantee a the reverse channel works
  - A failed RTS on the control channel does not indicate that the reverse channel does not work

### Periodic Resume

- Approach
  - Suspend most of the time
  - Periodically resume to check for pending communication
- Communication indications
  - Out-of-band channel
  - ▶ In-band signaling

- Protocols
  - Synchronous
  - Asynchronous



#### Basic Idea

- Time is slotted
- Nodes selectively remain awake for full slot duration
- Discovery occurs when two active slots overlap
- If all nodes are synchronized, all nodes are guaranteed to have overlapping awake periods



- Protocol: IEEE 802.11 Power Save Mode (PSM)
  - Nodes are synchronized and wakeup periodically (Beacon Period)
  - ▶ Each beacon period is broken up into two segments
    - Ad-hoc Traffic Indication Map (ATIM) Window
      - □ Announcement in the ATIM indicates data
      - ☐ Target node responds with an ATIM ACK
      - □ If a node receives no announcements, it goes back to sleep
    - > Transmission period
      - □ Sender can transmit packet until the end of the beacon period

#### ▶ IEEE 802.11 PSM



#### Centralized solution

- Synchronization driven by base station
- In beacon message

#### Distributed solution

- No base station
- Synchronization protocols can be used to loosely synchronize nodes
  - Nodes wake up for a short period and check for channel activity
  - Return to sleep if no activity detected



- Persistent loose synchronization
  - Constant, high synchronization overhead



- Signaling
  - No synchronization overhead
  - High signaling overhead
    - Long preambles, all nodes wake up



- Signaling: Wake-up packets
  - Send wake-up packets instead of preamble
  - Wake-up packets tell when data is starting so that receiver can go back to sleep as soon as it receives one wake-up packet



# Signaling: Multiple send

- Send data several times
- ▶ Receiver can listen at any time and get all data

### Problem with all approaches

- Communication costs are mostly paid by the sender
- The amount of time the sender spends transmitting may be much longer than the actual data length



#### Problems

- ▶ Maintaining synchronization may be difficult
- Throughput is limited by the size of the notification window
  - If the notification window is too small, packets get buffered
  - Buffers may eventually overflow

### Approach

- Stay awake longer to guarantee overlap of awake periods
- Overlap is guaranteed if the awake periods are more than half the beacon period



### Basic protocol

- Use beacon messages at the start of awake periods
- Some protocols use notification messages (similar to ATIM)



#### Problem

 No guarantee that all nodes will hear each other's beacon or notification messages



### Solution

 Have a beacon at the beginning and end of the beacon interval



#### Alternate solution

- Beacon at the beginning of odd periods
- Beacon at the end of even periods



#### Problem

- Nodes stay awake more than half the time
- Wastes too much energy!



#### Reduce awake time

- Do not wake up every beacon interval
- Delay depends on number of overlapping intervals



- Randomized Approach
  - Birthday protocol
    - Randomly select a slot to wake up in with a given probability
    - Advantage
      - □ Good average case performance
    - Disadvantage
      - □ No bounds on worst-case discovery latency



### Extended sleep

- Wake up once every T intervals
- Adds delay up to T× length of beacon interval



### Quorum

- Increase number of beacon intervals in cycle (n)
- ▶ Increase number of awake periods  $(2n 1 \text{ of } n^2)$



Delay is determined by where the overlap is (worst case n<sup>2</sup>)



### Quorum

- $\blacktriangleright$  Example: n = 4,  $n^2 = 16$ , 2n-1 = 7
  - Two overlapping intervals:  $delay = n^2 2$

#### Node i

| 0  | 1  | 2  | 3  |
|----|----|----|----|
| 4  | 5  | 6  | 7  |
| 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 |

#### Node j

| 0  | 1  | 2  | 3  |
|----|----|----|----|
| 4  | 5  | 6  | 7  |
| 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 |

- Node i is awake
- Node j is awake
- Both nodes are awake

#### Deterministic

- ▶ Find a feasible overlapping pattern
  - Guarantee at least one overlapping interval
  - Requires knowledge of number of nodes



slot

- Deterministic: Prime-based
  - Disco
    - Pick two primes p1 and p2
    - Wake up every p1 and p2 slot
    - Guarantees discovery in p1 x p2 slots



- Deterministic: Prime-based
  - ▶ U-Connect
    - Select I prime p
    - Wake up every pth slot and (p-I)/2 slots every p\*p slots
    - Overlap is guaranteed within p2 slots



### Searchlight

 Have a deterministic discovery schedule that has a pseudo-random component



### Searchlight

- Two slots per t slots (period)
  - Anchor slot: Keep one slot fixed at slot 0
  - Probe slot: Move around the other slot sequentially
- ▶ Guaranteed overlap in t\*t/2 slots
  - ▶ Based on the time needed to ensure a probe-anchor overlap
- Probe-probe overlap can also lead to discovery
  - Sequential scanning means less chance of a probe-probe overlap



Discovery through anchor-probe overlap

### Searchlight

- Extension: randomized probing
  - Move the probe slot randomly
- Each node randomly chooses a schedule for its probe slot that repeats every (t\*t/2) slots
  - Schedules of two nodes appear random to each other
- Advantage
  - Retains the same worst-case bound
  - Improves average case performance



Discovery through probe-probe overlap

### Challenges

- Reducing time spent awake
- Reducing delay
- No support for broadcast
  - None of the current approaches provide an interval where all nodes are awake

# Wi-Fi 6 and beyond: Target Wake Time (TWT)

 Goal: reduce power consumption and contention

- Operating Modes
  - ▶ Individual TWT
  - Broadcast TWT
  - Opportunistic PS



### Target Wait Time (TWT)

- ▶ TWT Service Period (TWT SP)
  - Awake period to receive or send data
- TWT Wake Interval
  - Average time between successive TWT SP start times
- TWT Channel
  - Temporarily primary channel
- TWT Agreement
  - ▶ Final agreement between AP and client



### Individual Target Wait Time (TWT)



- Client sends waking schedule information to AP
- AP devises a schedule and sends TWT values to client
- The client wakes up and transmits according to the schedule
- Explicit Mode
  - ▶ AP sends client the nextTWT information on when to wake up again
  - Client wakes up at the next scheduled time to send a frame and receive a new TWT information
- Implicit Mode
  - Client calculates next TWT by adding a fixed value to the current TWT



### Broadcast Target Wait Time (TWT)



#### Hybrid PSM and TWT

- Beacon sub-intervals:
- ▶ Traffic Indication Map (TIM):
- Opportunistic sleep
  - Stay awake if Association Identifier (AID) is in TIM
  - No AID, client returns to a doze (sleep) state for the remainder of that service period
  - If AID is listed, client stays awake for that service period to receive data
- No negotiation required



### Opportunistic Power Save Mode



#### Scheduling

- AP sends TWT parameters in the Beacon frame using the TWT Element
- Clients use the TWT parameters from the most recently received TWT element

#### Trigger-based TWT

- ▶ AP sends a trigger frame to discover which clients are awake
- ▶ AP sends frames to awake clients
- Clients can doze after transmission



### Target Wait Time (TWT)

- ▶ TWT reduces congestion
  - Packet collisions cause retransmissions
  - Retransmission increase client energy consumption
  - Legacy Wi-Fi networks
    - Clients wake up at random times to transmit
    - Clients have no knowledge of the wake-up times of other clients
    - No collision avoidance mechanisms
  - TWT
    - ▶ APs negotiate wake up times for clients
    - APs can avoid having all clients wake up at the same time



#### TWT vs PSM

#### PSM

- Clients must wake up during each beacon interval to check for buffered traffic
- Amount of traffic is limited by the TIM

#### ▶ TWT

- Diverse sleep cycles
- Longer, negotiated sleep cycles
- Sleep cycle length independent of the standard beacon interval

