CS 439: Wireless Networking

MAC Layer – Bluetooth

Bluetooth

- Harald Blaatand "Bluetooth" II
 - King of Denmark 940-981 AC
- Runic stones in his capital city of Jelling
 - The stone's inscription ("runes") says:
 - ▶ Harald Christianized the Danes
 - ▶ Harald controlled the Danes
 - Harald believes that devices shall seamlessly communicate [wirelessly]

Classic Bluetooth

- Cable replacement
 - ▶ 2.4 GHz
 - FHSS over 79 channels (of IMHz each), 1600hops/s
 - IMbps
 - Upgraded to 1 or 2 Mbps in 5.0
 - Coexistence of multiple piconets
 - ▶ 10 meters (extendible to 100 meters)
 - Max Tx Power 10dB (extendible to 20dB in 5.0)

Bluetooth Radio

- MA scheme: Frequency hopping spread spectrum.
 - ▶ 2.402 GHz + k MHz, k=0, ..., 78
 - ▶ 1,600 hops per second.
 - ▶ I Mbps data rate.
 - Upgraded to 2 Mbps in BT 5.0

Bluetooth Network Topology

Radio designation

- Connected radios can be master or slave
- Radios are symmetric (same radio can be master or slave)

Piconet

- Master can connect to 7 simultaneous or 200+ inactive (parked) slaves per piconet
- Each piconet has maximum capacity (I Mbps)
- Unique hopping pattern/ID

Scatternet

- High capacity system
- Minimal impact with up to 10 piconets within range
- Radios can share piconets!

Bluetooth – Contention-free MAC

- Master performs medium access control
 - Schedules traffic through polling.
- Time slots alternate between master and slave transmission
 - Master-slave
 - Master includes slave address.
 - Slave-master
 - Only slave chosen by master in previous master-slave slot allowed to transmit.
 - If master has data to send to a slave, slave polled implicitly; otherwise, explicit poll.

Bluetooth Device Discovery - Inquiry

Device discovery

- Sends out an inquire, which is a request for nearby devices (within 10 meters)
- Devices that allow themselves to be discoverable issue an inquiry response
- Listeners respond with their address
- Can take up to 10.24 seconds, after which the inquiring device should know everyone within 10 meters of itself

Bluetooth Device Discovery - Inquiry

After inquiry procedure, A knows about others within range

Bluetooth Inquiry

Sender

- Inquiry sent on 16 different frequencies
- ▶ 16 channel train
 - about 1.28 seconds per channel
 - ▶ One full 16 channel train takes 10ms
- Receiver (device in standby mode)
 - Scans long enough for an inquiring device to send the inquiry on 16 frequencies
 - Scan must be frequent enough to guaranteed wake up during a 16 channel train
 - ▶ Enters inquiry scan state at least once every 1.28 seconds, and stays in that state for 10ms

Bluetooth Inquiry - Reliability

Challenge

- Noisy channels
- Lost packets
 - Train scan is repeated up to 4 times for each train (10.24 seconds)
 - Designed to successfully communicate at least once with all devices within range

Bluetooth 1.0

Initial version

Bluetooth I.0	Bluetooth 2.0	Bluetooth 3.0	Bluetooth 4.0	
Initial version	Significantly Increased Speed	High- Speed Bluetooth	Bluetooth Low Energy	
			Market demands: Low Power (0.01 - 0.5) Longer Range Decent speed	
			Faster discove	

BLE Highlights

- Shared wireless channel
 - BLE operates in the 2.4 GHz ISM band with Wi-Fi and other technologies (phones, microwave ovens ...)
- BLE = Bluetooth Low Energy
 - Improved discovery
 - Key component: Beacons
 - Tags send out advertising beacons (typ. dist 30ft)
 - ▶ Phones scan for beaco⁻⁻

BLE Highlights: Channel Use and Coexistence with Wi-Fi

- Separate advertising and connected channels
 - ▶ Key: Three disjoint advertising channels (37, 38, 39)
 - ▶ Positioned between Wi-Fi channels (1, 6, 11)

BLE Highlights: Advertising

- Advertising Tags
- Advertising Messages
 - Header + MAC Address+ up to 31 Bytes of data
 - Two types: Nonscannable, Scannable

BLE Highlights: Advertising

- Advertising Tags
- Advertising Messages
 - Header + MAC Address + up to 31 Bytes of data
 - > ~200 400 usec per packet
 - Two types: Non-scannable, Scannable
- Advertising Event
 - One advertising message sent out on each advertising channel (37, 38, 39)

BLE Highlights: Advertising

- Advertising Tags
- Advertising Messages
 - Header + MAC Address + up to 31 Bytes of data
 - ➤ ~200 400 usec per packet
 - Two types: Non-scannable, Scannable
- Advertising Event
 - One advertising message sent out on each advertising channel (37, 38, 39)
- Advertising Interval
 - One advertising event per advertising interval
 - e.g., every I sec or 100 msec

BLE Highlights: Advertising and Collisions

If tags get synchronized, all advertising messages will collide

BLE Highlights: Advertising and Collisions

Collision avoidance

- Jitter advertising times
- advDelay is added on to the end of each advertising event
- advDelay = rand [0,10ms]

BLE Highlights: Tags Types - Non-Scannable

- Non-Scannable Tags
- Ex. gBeacon v3, iBeacon (?)
- Tags send ADV_NONCONN_IND messages
- Typically sent back-to-back
- Scanners listen, but do not respond

BLE Highlights: Tags Types - Scannable

- Scannable Tags
- Ex. gBeacon VI, Estimote
- Tags send ADV IND messages
- Scanners respond with SCAN REQ message
- Tags respond with SCAN RSP message
 - Up to 31 Bytes of extra data
- Tags wait ~150 usec for a request after beacon

Scannable Tags

 One SCAN_RSP per channel per advertising event

Scannable Tags

- ONLY accept SCAN_RSP if SCAN_REQ was sent to that tag on that channel during that advertising event
- Some collision tolerance
 - Any requesting scanner can receive a SCAN_RSP as long as one SCAN_REQ is received and the tag responds
 - BUT, No SCAN_RSP if all SCAN_REQs collide

SCAN_REQ Collision Avoidance

Scanner backoff procedure

- Two parameters
 - backoffCount, upperLimit
- On starting scan
 - upperLimit = I, backoffCount = I
- Decrement backoffCount on receipt of ADV message
 - Only send SCAN_REQ if backoffCount == 0
- Adapt upperLimit based on success or failure of receipt of SCAN RSP
 - Reset backoffCount
 - backoffCount = rand (1, upperLimit)

BLE Highlights: Low-level Scanning

- Scanners
- Scan for tags on sequential channels (37, 38, 39)
- Scan Interval (SI)
 - Time spent on a channel

BLE Highlights: Low-level Scanning

- Scan Time
 - Scan Int == Scan Window⇒ Always on
- Scanners
- Scan for tags on sequential channels (37, 38, 39)
- Scan Interval (SI)
 - Time spent on a channel
- Scan Window (SW)
 - Time spent scanning at beginning of Scan Interval

BLE Highlights: Application-level Scanning

- Scanners
- Application Scan Time
 - > Tag Advertising Interval

Application Scan Time

BLE Highlights: Application-level Scanning

- Scan Time
 - ▶ 100% on Idle Time = 0
- (Continuous scanning)
 - ▶ 10% on Idle Time = 10 * Scan Time

- Scanners
- Application Scan Time
 - > Tag Advertising Interval
- Application Idle Time

BLE Highlights: MAC Behavior

No Carrier Sense

Tag does not listen for a clear channel before sending any message

Minimal Contention Avoidance

- Jitter length of advertising interval + rand [0, 10 ms]
- Backoff for sending SCAN_REQ

Other parameters

- Inter-frame spacing
- Channel switching delay
- Scan Interval
- Scan Window scanning)

150us (from spec)

274us (from Nordic)

11.25ms (from spec)

11.25ms (continuous

BLE in the Real World

- BLE beacons (or tags)
 - Location-specific information
 - Deployed in public places
 - Stores, airports, museums
 - Accessed via phones with BLE

- Performance questions
 - How long does it take to detect a nearby tag?
 - Can we detect a tag within 5 sec with 95% success?

BLE in the Real World - Density

As deployments increase, how will the tags behave?

Evaluating Tag Behavior

- Environmental Impact
 - At what density of tags or phones does the system break down?
- Metric
 - 5 Sec Success
 - Could the tag be found in 5 sec?
 - Checked every I sec over the whole run

Evaluation: BLE Scan/Response

5 second success

- Multiple chances to find the tag
- Success
 decreases
 significantly as
 more phones
 are added
- Number of phones is more important than number of tags

Evaluation: BLE Scan/Response

- 5 second success
 - Below target threshold for more than 5 phones

SCAN_REQ: Opportunistic Listening

- Accept a SCAN_RSP on a channel if a SCAN_REQ would have been sent, but the backoff procedure indicated not to send it
 - Any requesting or backing off scanner can receive a SCAN_RSP as long as one SCAN_REQ is received and the tag responds
 - Still, No SCAN_RSP if all SCAN_REQs collide

Opportunistic Listening: Simulation Comparison

- Significant increase in success rate as number of phones increases
- Cannot prevent SCAN_REQ collisions

Bluetooth 5.0 Why An Upgrade Was Needed

- ▶ 4.0 is too slow
- Low range (especially indoors)
- Power issues
- Issues relating to multiple radios on the same device

Bluetooth Progression

Bluetoot 1.0	h Bluetooth 2.0	Bluetooth 3.0	Bluetooth 4.0	Bluetooth 5.0	
Initial version	Significantly Increased Speed	High- Speed Bluetooth	Bluetooth Low Energy	loT Bluetooth	
			Power issues	especially indo	,

Bluetooth 5.0 Improvements

BLE 4.0	BLE 5.0
Advertising Congestion/Interference	Use of Secondary channels Increase payload size -> less transmission

Primary Channels

Primary Channels

Advertising events & Extended Advertising Event started

Advertising events closed

ADV_EXT_IND (extended advertising indicator):

A pointer with

- 1. Channel indices
- 2. Timing info
- 3. PHY layer setting

Primary Channels

No data transmission on primary channels During extended advertising

Bluetooth 5.0: Payload Increase

Bluetooth 5.0: Multiple Advertising Sets

- Multiple, independent advertising sets simultaneously
- Enhances flexibility and efficiency of advertising

Bluetooth 5.0: Congestion Management

Bluetooth 5.0: Congestion Management

Bluetooth 5.0: Congestion Management

Bluetooth 5.0 Improvements

BLE 4.0	BLE 5.0
Advertising Congestion/Interference	Use of Secondary channels Increase payload size -> less transmission
Insufficient for High Data Rate Applications	Increased max transfer speed (IMbps -> 2Mbps)
Inadequate for Long Range Applications	Coded physical layer (up to 400m – 1km) Robust algorithm to strengthen signal

Parameter	LE IM	LE Coded S2	LE Coded S8	LE 2M
Symbol Rate	I Msps	I Msps	I Msps	2 Msps
Data Rate	I Mbps	500 kbps	125 kbps	2 Mbps
Error Correction	None	FEC	FEC	None
Range Multiplier	I	~ 2	~ 4	~ 0.8

Symbols per sec

▶ S2: 2 symbols = I bit

▶ S8: 8 symbols = I bit

Parameter	LE IM	LE Coded S2	LE Coded S8	LE 2M
Symbol Rate	I Msps	I Msps	I Msps	2 Msps
Data Rate	I Mbps	500 kbps	125 kbps	2 Mbps
Error Correction	None	FEC	FEC	None
Range Multiplier	I	~ 2	~ 4	~ 0.8

Baseline for ble 4.0

Parameter	LE IM	LE Coded S2	LE Coded S8	LE 2M
Symbol Rate	I Msps	I Msps	I Msps	2 Msps
Data Rate	I Mbps	500 kbps	125 kbps	2 Mbps
Error Correction	None	FEC	FEC	None
Range Multiplier	I	~ 2	~ 4	~ 0.8

2Mbps max data rate for BLE 5.0 (High data rate application, reduced range)

Parameter	LE IM	LE Coded S2	LE Coded S8	LE 2M
Symbol Rate	I Msps	I Msps	I Msps	2 Msps
Data Rate	I Mbps	500 kbps	125 kbps	2 Mbps
Error Correction	None	FEC	FEC	None
Range Multiplier	ı	~ 2	~ 4	~ 0.8

Quadruple distance for coded PHY (Long range application, reduced data rate)

AdvData [Bytes]	Connectable Advertising	e Undirected g event [µs]	Connectable Undirected Advertising event Using Offloading [µs]	
	LE 1M	LE Coded S=8	LE 1M	LE Coded S=8
0	384	(3,312)	568	4,864
15	744	(6,192)	688	5,824
31	1,128	(9,264)	816	6,848
100	(2,784)	(22,512)	1,368	11,264
245	(6,264)	(50,352)	2,528	20,544

radio on-time in microsec

Bluetooth 5.0 Improvements

BLE 4.0	BLE 5.0
Advertising Congestion/Interference	Use of Secondary channels Increase payload size -> less transmission
Insufficient for High Data Rate Applications	Increased max transfer speed (IMbps -> 2Mbps)
Inadequate for Long Range Applications	Coded physical layer (up to 400m – 1km) Robust algorithm to strengthen signal
Limited Advertising Capabilities / Power efficiency	Dynamic advertising sets Improved Channel Selection Algorithm Precise Timing Controls

Bluetooth 5.0: Adaptive Frequency Hopping

Adaptive Frequency Hopping

- Channels (0-36) set to used or unused, algorithmically determine sequence
- Channel Selection Algorithm (CSA) #1:12 distinct sets
- CSA #2 allows for many distinct sequences, reduces collisions

Bluetooth 5.0: Adaptive Frequency Hopping

CSA 1 (no randomization)

CSA 2 (pseudo randomization)

Bluetooth 5.0: Packet Chaining

- Controller can chain packets together, using AuxPtr header fields (references to Auxiliary Packets containing payload)
- ▶ AuxPtr includes the channel number 0-36, receiver can find it
- ▶ Up to 1,650 bytes
- Improves efficiency, data transfer rate, power, etc.

Bluetooth 5.0: Other New Features

Dual Audio

A single source device can stream audio to two different connected audio devices simultaneously

Mesh Networking

Devices can relay packets