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Multi-Hop Wireless Networks

 In an ideal world …
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Multi-Hop Wireless Networks

 Reality check …

 Problem 1

 Node A can’t use both links at the same 
time
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Multi-Hop Wireless Networks
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Hidden and exposed terminals Reality check …

 Problem 2

 Can’t use both links at the same time



 Reality check …

 Problem 3

 Lots of contention for the channels

 Everyone wants to send

Multi-Hop Wireless Networks
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 Reality check …

 Problem 4

 TCP uses ACKS and bidirectional channels

 Even more contention!

Multi-Hop Wireless Networks
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 What if …

 Multiple radios on each node

Multi-Hop Wireless Networks
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 What if …

 Multiple radios on each node
 Each radio uses a different channel

Multi-Hop Wireless Networks
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 What if

 WiFi 6 - OFDMA

Multi-Hop Wireless Networks
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Routing
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 Goals

 Capture the notion of “best” routes

 Propagate changes effectively

 Require limited information exchange

 Conceptually

 A network can be represented as a graph where 

each host/router is a node and each physical 

connection is a link



Routing: Ideal Approach
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 Maintain information about each link

 Calculate fastest path between each directed 

pair
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Routing: Ideal Approach
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 Problems
 Unbounded amount of information
 Queueing delay can change rapidly
 Graph connectivity can change rapidly

 Solution
 Dynamic

 Periodically recalculate routes

 Distributed
 No single point of failure

 Reduced computation per node

 Abstract Metric
 “Distance” may combine many factors

 Use heuristics



Routing Overview
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 Algorithms

 Static shortest path algorithms

 Bellman-Ford

 Based on local iterations

 Dijkstra’s algorithm

 Build tree from source

 Distributed, dynamic routing algorithms

 Distance vector routing

 Distributed Bellman-Ford

 Link state routing

 Implement Dijkstra’s algorithm at each node



Bellman-Ford Algorithm
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 Based on repetition of iterations

 For every node A and every neighbor B of A

 Is the cost of the path (A → B → → → destination) 

smaller than the currently known cost from A to 

destination?

 If YES

 Make B the successor node for A

 Update cost from A to destination

 Can run iterations synchronously or all at once
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Distance Vector Routing
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 Distributed dynamic version of Bellman-Ford

 Each node maintains a table of

 <destination, distance, successor>

 Information acquisition

 Assume nodes initially know cost to immediate 

neighbor

 Nodes send <destination, distance> vectors to all 

immediate neighbors

 Periodically – seconds, minutes

 Whenever vector changes – triggered update



Distance Vector Routing
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 When a route changes

 Local failure detection

 Control message not acknowledged

 Timeout on periodic route update

 Current route disappears

 Newly advertised route is shorter than previous 

route



Distance Vector Routing
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 Problem

 Node X notices that its link to Y is broken 

 Other nodes believe that the route through X is 

still good

 Mutual deception!

A B

C



Dijkstra’s Algorithm
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 Greedily grow set C of confirmed least cost paths

 Initially C = {source}

 Loop N-1 times

 Determine the node M outside C that is closest to the 

source

 Add M to C and update costs for each node P outside 

C

 Is the path (source → → … → M → P) better than the 

previously known path for (source → P)?

 If YES

 Update cost to reach P
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Link State Routing
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 Strategy
 Send all nodes information about directly connected 

links
 Status of links is flooded in link state packets (LSPs)

 Each LSP carries
 ID of node that created the LSP
 Vector of <neighbor, cost of link to neighbor> pairs for 

the node that created the LSP
 Sequence number
 Time-to-live (TTL)

 Each node maintains a list of (ideally all) LSP’s and 
runs Dijkstra’s algorithm on the list



Link State Routing
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 LSP must be delivered to all nodes

 Information acquisition via reliable flooding
 Create local LSP periodically with increasing 

sequence number

 Send local LSP to all immediate neighbors

 Forward new LSP out on all other links

 What does “new” mean?
 New sequence number 

 TTL accounts for wrapped sequence numbers
 Decrement TTL for stored nodes



Source Routing
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 Variant of link state routing

 Like link state, distribute network topology and 

compute shortest paths at source

 …but only at source, not every hop!



Link State Routing
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 Pros

 Stabilizes quickly, does not generate much traffic, 

responds to topology changes or node failures

 Cons

 Amount of information stored at each node is large



LS vs. DV
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 DV 
 Send everything you know to your neighbors

 LS 
 Send info about your neighbors to everyone

 Message size
 Small with LS

 Potentially large with DV

 Message exchange
 LS: O(nE)

 DV: only to neighbors



When the network just isn’t there …
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 Mesh networks

 Core nodes are stable

 Paths may exist between a src/dst pair 

 Ad hoc networks

 Group of cooperating nodes

 Nodes are mobile

 Paths eventual exist between a src/dst pair

 All nodes are routers



Mesh Network
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Ad Hoc Networks

 Formed by wireless hosts that may be mobile

 Without (necessarily) using a pre-existing infrastructure

 Routes between nodes may potentially contain multiple 
hops

 Mobility causes route changes
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Why Ad Hoc Networks ?

 Ease of deployment

 Speed of deployment

 Decreased dependence on infrastructure
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Many Variations
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 Fully Symmetric Environment
 All nodes have identical capabilities and responsibilities

 Asymmetric Capabilities
 Transmission ranges and radios may differ 

 Battery life at different nodes may differ

 Processing capacity may be different at different nodes

 Speed of movement

 Asymmetric Responsibilities
 Only some nodes may route packets 

 Some nodes may act as leaders of nearby nodes (e.g., 
cluster head)



Many Variations
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 Traffic characteristics may differ in different ad 
hoc networks
 Bit rate

 Timeliness constraints

 Reliability requirements

 Unicast / multicast / geocast

 Host-based addressing / content-based addressing / 
capability-based addressing

 May co-exist (and co-operate) with an 
infrastructure-based network



Many Variations
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 Mobility characteristics

 Speed 

 Predictability 

 Direction of movement

 Pattern of movement

 Uniformity (or lack thereof) of mobility 

characteristics among different nodes



Challenges
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 Limited wireless transmission range

 Broadcast nature of the wireless medium
 Hidden terminal problem

 Packet losses due to transmission errors

 Mobility-induced route changes

 Mobility-induced packet losses

 Battery constraints

 Potentially frequent network partitions

 Ease of snooping on wireless transmissions



The Holy Grail
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 A one-size-fits-all solution

 Perhaps using an adaptive/hybrid approach that can 

adapt to situation at hand

 Difficult problem

 Many solutions proposed trying to address a 

sub-space of the problem domain



Unicast Routing in Ad Hoc Networks

Fall 2025© CS/ECE 439 Staff, University of Illinois



Why is routing in wireless ad hoc networks 

different/difficult?
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 Link instability causes many routing issues

 Shortest hop routing often worst choice

 Scarce bandwidth makes overhead conspicuous

 Battery power a concern

 Security and misbehavior …

 Host mobility

 Link failure/repair due to mobility may have different 
characteristics than those due to other causes

 Rate of link failure/repair may be high when nodes move fast

 New performance criteria may be used

 Route stability despite mobility

 Energy consumption



Routing in Mobile Networks
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 Imagine hundreds of hosts moving

 Routing algorithm needs to cope up with varying 

wireless channel and node mobility

Where’s 

RED



Unicast Routing Protocols
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 Many protocols have been proposed

 Some have been invented specifically for ad hoc 

networks

 Others are adapted from wired network routing

 No single protocol works well in all 

environments

 Some attempts made to develop adaptive protocols



Routing Protocols
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 Proactive protocols

 Determine routes independent of traffic pattern

 Traditional link-state and distance-vector routing 

protocols are proactive

 Reactive protocols

 Maintain routes only if needed

 Hybrid protocols

 Maintain routes to nearby nodes

 Discover routes for far away nodes



Trade-Off
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 Latency of route discovery

 Proactive protocols 

 May have lower latency since routes are maintained at all 

times

 Reactive protocols

 May have higher latency because a route from X to Y will 

be found only when X attempts to send to Y



Trade-Off
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 Overhead of route discovery/maintenance

 Reactive protocols 

 May have lower overhead since routes are determined 

only if needed

 Proactive protocols 

 Can (but not necessarily) result in higher overhead due to 

continuous route updating

 Which approach achieves a better trade-off 

depends on the traffic and mobility patterns



Flooding for Data Delivery
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 Sender
 Broadcasts data packet P to all its neighbors

 Intermediate nodes
 Forward P to its neighbors

 Sequence numbers 
 Used to avoid the possibility of forwarding the same 

packet more than once

 Destination
 Packet P reaches destination D provided that D is 

reachable from sender S

 Node D does not forward the packet



Flooding for Data Delivery

B

A

S E
F

H

J

D

C

G

I
K

Z

Y

M

N

L

nodes that have received packet

Fall 2025© CS/ECE 439 Staff, University of Illinois



Flooding for Data Delivery
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Flooding for Data Delivery
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 Node H receives packet from two neighbors: 

potential for collision
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Flooding for Data Delivery
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 Node C receives packet from G and H, but 

does not forward it again, because node C has 

already forwarded that packet once
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Flooding for Data Delivery
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 Nodes J and K both broadcast packet to node D

 Since nodes J and K are hidden from each other, their 

transmissions may collide 
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Flooding for Data Delivery
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 Nodes J and K both broadcast packet to node D

=> Packet may not be delivered to node D at all, 

despite the use of flooding
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Flooding for Data Delivery
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 Node D does not forward packet, because 

node D is the intended destination
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Flooding for Data Delivery
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 Flooding completed
 Nodes unreachable from S do not receive packet (e.g., 

Z)
 Nodes for which all paths from S go through D also do 

not receive packet (example: N)
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Flooding for Data Delivery
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 Flooding may deliver packets to too many 

nodes

 worst case, all nodes reachable from sender may 

receive the packet
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Flooding for Data Delivery: Advantages

 Simplicity

 Efficiency
 Low rate of information transmission 

 Overhead of explicit route discovery/maintenance 
incurred by other protocols is relatively higher

 For example, when nodes transmit small data packets 
relatively infrequently, and many topology changes occur 
between consecutive packet transmissions

 Potentially higher reliability of data delivery
 Because packets may be delivered to the 

destination on multiple paths
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Flooding for Data Delivery: Disadvantages

 Potentially, very high overhead

 Data packets may be delivered to too many nodes 

who do not need to receive them

 Potentially lower reliability of data delivery

 Flooding uses broadcasting

 Hard to implement reliable broadcast

 Broadcast in IEEE 802.11 MAC is unreliable

 e.g., nodes J and K may transmit to node D simultaneously, 

resulting in loss of the packet 

 In this case, destination would not receive the packet at all  
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Flooding of Control Packets

 Many protocols perform (potentially limited) flooding 

of control packets, instead of data packets

 The control packets are used to discover routes

 Discovered routes are subsequently used to send data 

packet(s)

 Overhead of control packet flooding is amortized 

over data packets transmitted between consecutive 

control packet floods
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Dynamic Source Routing (DSR)

 Route Discovery

 When node S wants to send a packet to node D, 

but does not know a route to D, node S initiates a 

route discovery

 Source node S floods Route Request (RREQ) 

 Each node appends own identifier when forwarding 

RREQ
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Route Discovery in DSR
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Route Discovery in DSR
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 [X,Y]: list of identifiers appended to RREQ

Broadcast 

transmission
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Route Discovery in DSR
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 Node H receives packet RREQ from two 

neighbors: potential for collision
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Route Discovery in DSR
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 Node C receives RREQ from G and H

 Node C does not forward it again, because node C 

has already forwarded RREQ once
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Route Discovery in DSR
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 Nodes J and K both broadcast RREQ to node 
D
 Since nodes J and K are hidden from each other, 

their transmissions may collide 
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Route Discovery in DSR
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  Node D does not forward RREQ, because 

node D is the intended target of the route 

discovery
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Route Reply in DSR
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 Destination D
 On receiving the first RREQ, send a Route Reply (RREP)

 RREP is sent on a route obtained by reversing the route 
appended to received RREQ

 RREP includes the route from S to D on which RREQ was 
received by node D
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Route Reply in DSR

 Route Reply 

 Bi-directional links

 Reverse route in Route Request (RREQ) 

 RREQ should be forwarded only if received on a link that is known to be bi-
directional

 Unidirectional (asymmetric) links 

 RREP may need a route discovery for S from node D 

 Route Reply is piggybacked on  the Route Request from D

 Unless node D already knows a route to node S

 IEEE 802.11 MAC 
 Links must be bi-directional (since ACK is used)
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Dynamic Source Routing (DSR)

 On receiving RREP

 Cache the route included in the RREP

 Sending

 The entire route is included in the packet header

 Hence the name source routing

 Intermediate nodes 

 Use the source route included in a packet to determine to 

whom a packet should be forwarded
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Data Delivery in DSR
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 Packet header size grows with route length

B

A

S E
F

H

J

D

C

G

I
K

Z

Y

M

N

L

DATA [S,E,F,J,D]



When to Perform a Route Discovery

 When node S wants to send data to node D, 

but does not know a valid route node D
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DSR Optimization: Route Caching

 Caching
 Each node caches a new route it learns by any means

 Snooping
 A node may also learn a route when it overhears Data packets

 Use of Route Caching
 Broken routes

 Use another route from the local cache

 Otherwise, initiate new route discovery

 Intermediate response
 On receiving a Route Request for some node D

 Node X can send a Route Reply if node X knows a route to node D

 Use of route cache 
 Speed up route discovery

 Reduce propagation of route requests
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Use of Route Caching

 Broken routes

 Use another route from the local cache

 Otherwise, initiate new route discovery

 Intermediate response

 On receiving a Route Request for some node D
 Node X can send a Route Reply if node X knows a route to node D

 Use of route cache 

 Speed up route discovery

 Reduce propagation of route requests
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Use of Route Caching
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 [P,Q,R]   Represents cached route at a node

 DSR maintains the cached routes in a tree format
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Use of Route Caching:

Speed up Route Discovery
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 Z sends a route request for node C

 Node K sends back a route reply [Z,K,G,C] to 

node Z using a locally cached route
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Use of Route Caching:

Reduce of Route Requests
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 No link between D and Z
 Route Reply (RREP) from node K limits flooding of 

RREQ

 In general, the reduction may be less dramatic.
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Route Error (RERR)
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 When attempt to forward the data packet S (with 
route SEFJD) on J-D fails
 J sends a route error to S along J-F-E-S

 Nodes hearing RERR update their route cache to 
remove link J-D
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Route Caching: Beware!

 Stale caches 

 Can adversely affect performance

 Timeliness
 With passage of time and host mobility, cached routes may 

become invalid

 Know when to give up

 A sender host may try several stale routes (obtained from 
local cache, or replied from cache by other nodes), before 
finding a good route
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Dynamic Source Routing: Advantages

 On-demand

 Routes maintained only between nodes that need to 

communicate

 Reduces overhead of route maintenance

 Route caching 

 Can further reduce route discovery overhead

 A single route discovery may yield many routes to the 

destination, due to intermediate nodes replying from local 

caches
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Dynamic Source Routing: Disadvantages

 Size
 Packet header size grows with route length

 Packets
 Flood of route requests may reach all nodes 

 Timing
 Must avoid route requests collisions 

 Insertion of random delays before forwarding RREQ

 Route Reply Storm problem
 Too many nodes reply using local cache

 Prevent a node from sending RREP if it hears another RREP with a 
shorter route
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Dynamic Source Routing: Disadvantages

 Pollution

 An intermediate node may send Route Reply using a stale 

cached route

 Need some mechanism to purge (potentially) invalid 

cached routes

 For some proposals for cache invalidation

 Static timeouts

 Adaptive timeouts based on link stability
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Flooding of Control Packets

 How to reduce the scope of the route request 

flood ?

 LAR

 How to reduce redundant broadcasts ?

 The Broadcast Storm Problem
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Location-Aided Routing (LAR) 

 Exploit location information to limit scope of 
flood
 Location information may be obtained using GPS

 Expected Zone
 A region that is expected to hold the current location 

of the destination

 Determined based on potentially old location 
information and knowledge of the destination’s speed

 Route requests limited to a Request Zone that 
contains the Expected Zone and location of the 
sender node
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Expected Zone in LAR
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 X = last known location of node D, at time t0

 Y = location of node D at current time t1, unknown 

to node S

 r = (t1 - t0) * estimate of D’s speed

X

Y

r

Expected Zone



Request Zone in LAR

X

Y

r

S

Request Zone

Network Space

B
A
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LAR

 Zone

 Explicitly specified in the route request

 Each node must  know its physical location to determine 
whether it is within the request zone

 Forwarding

 Only nodes within the request zone forward route requests

 Failure

 Initiate another route discovery (after a timeout) using a 
larger request zone

 the larger request zone may be the entire network

 Rest of route discovery protocol similar to DSR
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Location Aided Routing (LAR)

 Advantages

 Reduces the scope of route request flood

 Reduces overhead of route discovery

 Disadvantages

 Nodes need to know their physical locations

 Does not take into account possible existence of 

obstructions for radio transmissions

Fall 2025© CS/ECE 439 Staff, University of Illinois



Broadcast Storm Problem

 When node A broadcasts a route query, nodes 

B and C both receive it

 B and C both forward to 

their neighbors

 B and C transmit at about 

the same time since they 

are reacting to receipt of 

the same message from A

 This results in a high 

probability of collisions

B

D

C

A
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Broadcast Storm Problem

 Redundancy

 A given node may receive the same route request 

from too many 

nodes, when one 

copy would have 

sufficed

 Node D may receive 

from nodes B and C B

D

C

A
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Solutions for Broadcast Storm

 Probabilistic scheme

 Re-broadcast (forward) the request with probability 

p

 Re-broadcasts by different nodes should be 

staggered by using a collision avoidance technique

 Reduce the probability that nodes B and C would 

forward a packet simultaneously 
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Solutions for Broadcast Storm

 Counter-Based Scheme

 If node E hears more than k neighbors broadcasting 

a given route request, before it can itself forward it, 

then node E will not forward the request

 Intuition

 k neighbors together have probably already 

forwarded the request to all of E’s neighbors
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Solutions for Broadcast Storm

 Distance-Based Scheme
 If node E hears RREQ 

broadcasted by some node 
Z within physical distance d, 
then E will not re-broadcast 
the request 

 Intuition
 Z and E are close, so 

transmission areas covered 
by Z and E are not very 
different

E

Z

<d
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Summary: Broadcast Storm Problem

 Flooding is used in many protocols, such as Dynamic 

Source Routing (DSR)

 Problems associated with flooding

 Collisions 

 May be reduced by “jittering” (waiting for a random interval before 

propagating the flood)

 Redundancy 

 May be reduced by selectively re-broadcasting packets from only a 

subset of the nodes
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Ad Hoc On-Demand Distance Vector 

Routing (AODV)

 Source routing

 Large headers

 Particularly when data contents of a packet are 

small

 AODV 

 Maintaining routing tables at the nodes

 Routes are maintained only between nodes which 

need to communicate
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AODV

 Route Requests (RREQ) 

 Forwarded in a manner similar to DSR

 Routes

 When a node re-broadcasts a Route Request, it sets up a reverse path 
pointing towards the source

 AODV assumes symmetric (bi-directional) links

 Destination

 Destination replies to Route Request with a Route Reply

 Route Reply 

 Follows reverse path set-up by Route Request
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Route Requests in AODV
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Route Requests in AODV

Broadcast transmission
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Route Requests in AODV
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Reverse Path Setup in AODV

Fall 2025© CS/ECE 439 Staff, University of Illinois

 Node C receives RREQ from G and H, but 

does not forward it again, because node C has 

already forwarded RREQ once
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Reverse Path Setup in AODV
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Reverse Path Setup in AODV
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 Node D does not forward RREQ, because 

node D is the intended target of the RREQ
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Route Reply in AODV
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Route Reply in AODV

 Intermediate node reply

 Send a Route Reply (RREP) if it knows a more recent path than the one 
previously known to sender

 Sequence Numbers
 Destination sequence numbers are used to determine age

 Fewer intermediate replies than DSR

 A new Route Request for a destination is assigned a higher destination 
sequence number

 An intermediate node that knows a route with a smaller sequence 
number cannot send Route Reply
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Forward Path Setup in AODV
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 Forward links are setup when RREP travels 

along the reverse path
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Data Delivery in AODV
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 Routing table entries used to forward data 

packet

 Route is not included in packet header
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Timeouts

 Routing table entries

 Reverse Paths

 Purged after a timeout interval

 Timeout should be long enough to allow RREP to come 

back

 Forward Paths

 If no is data being sent using a particular routing table 

entry

 Entry is deleted from the routing table (even if the route may 

actually still be valid)
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Link Failure Reporting

 Link Failure

 When the next hop link in a routing table entry 

breaks, all active neighbors are informed

 Active neighbors

 Any neighbor that sent a packet within 

active_route_timeout interval which was forwarded using 

that entry

 Link failures 

 Propagated by means of Route Error messages 

 Also update destination sequence numbers
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Link Failure Detection

 Hello messages
 Neighboring nodes periodically exchange hello 

message

 Absence of hello message is used as an indication of 
link failure

 Alternatively
 Failure to receive several MAC-level 

acknowledgement may be used as an indication of 
link failure
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Why Sequence Numbers in AODV

 To avoid using old/broken routes
 To determine which route is newer

 To prevent formation of loops

 RERR sent by C is lost 
 A does not know about failure of link C-D 

 C performs a route discovery for D
 Node A receives the RREQ (say, via path C-E-A)

 Node A replies since A knows a route to D via node B

 Results in a loop (for instance, C-E-A-B-C )

A B C D

E
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Why Sequence Numbers in AODV

 Loop C-E-A-B-C

A B C D

E
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Optimization: Expanding Ring Search

 Route Requests

 Initially sent with small Time-to-Live (TTL) field, to 

limit propagation

 DSR also includes a similar optimization

 If no Route Reply is received

 Larger TTL 
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Summary: AODV

 Routes need not be included in packet headers

 Nodes maintain routing tables

 Entries only for routes that are in active use

 At most one next-hop per destination 

maintained at each node

 DSR may maintain several routes for a single 

destination

 Unused routes expire even if topology does 

not change
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Routing Metrics
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Power-Aware Routing 

 Define optimization criteria as a function of 

energy consumption

 Examples

 Minimize energy consumed per packet

 Minimize time to network partition due to energy 

depletion

 Maximize duration before a node fails due to 

energy depletion

Fall 2025© CS/ECE 439 Staff, University of Illinois



Power-Aware Routing 

 Assign a weight to each link

 Weight of a link may be a function of 
 Energy consumed when transmitting a packet

 Residual energy level

 Low residual energy level may correspond to a high cost

 Prefer a route with the smallest aggregate weight
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Link Stability-Based Routing

 Idea

 A node X re-broadcasts a Route Request received 

from Y only if the (X,Y) link is deemed to have a 

strong signal stability

 Signal stability

 Evaluated as a moving average of the signal strength 

of packets received on the link in recent past

 Alternative approach 

 Assign a cost as a function of signal stability
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Connection Stability-Based Routing

 Only utilize links that have been stable for 

some minimum duration

 If a link has been stable beyond some minimum 

threshold

 It is likely to be stable for a longer interval

 If it has not been stable longer than the threshold

 It may soon break (could be a transient link)

 Prefer paths with high aggregate stability
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Expected Transmission Count (ETX)
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 Link Metric

 Fewest expected retransmissions 

 Probe packets measure the packet delivery ratio in 

both forward and reverse directions

 Path Metric

 Sum of the individual link ETX values



Expected Transmission Count (ETX)
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 Forward delivery ratio = probability of a 

packet arriving at the destination

 Reverse delivery ratio = probability of a 

receiver's acknowledgment (ACK) arriving 

back at the sender.

 Link ETX = 1/(Forward delivery ratio x 

Reverse delivery ratio)



Expected Transmission Count (ETX)
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 Strength

 Significant improvement over simple hop-count 

metrics by preferring reliable, low-loss links.

 Limitation

 Designed for single-radio networks

 Does not account for differences in link bandwidth 

or the effects of inter-channel interference in multi-

radio networks



IEEE 802.11s: WLAN Mesh
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 Routing

 Hybrid Wireless Mesh Protocol

 Ad hoc On-Demand Distance Vector (AODV) Routing

 Tree-based routing

 Metrics

 Airtime Link Metric (ALM)

 Time spent transmitting data and the packet error rate on a link.



Weighted Cumulative Expected 

Transmission Time (WCETT)
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 Goal
 Minimize total expected transmission time.

 Metric
 Link Metric

 Expected Transmission Time (ETT), which incorporates both 
the link loss rate and bandwidth

 Link ETT = (Link ETX) * (Packet Size / Bandwidth)

 Intra-channel interference
 The sum of the Expected Transmission Times (ETTs) of links 

that share the same wireless channel

 Path Metric:
 The cumulative ETT of all links on the path
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