WiFi 7 - Casual Overview

Nishant Sheikh

Setting the Stage

- We have 3 bands: 2.4, 5, 6 GHz
- OFDMA: router controls scheduling
- Channels split into Resource Units (RUs) for better utilization

How can we improve things?

Better data rate?

- More frequency bands
- Wider channel width
- Denser modulation
- More spatial streams
- What else? Think outside the box

Better channel utilization?

- Big improvements with WiFi 6
 OFDMA, but can we do better?
- What if a section if my channel is blocked?
- Is channel still underutilized?

How can we improve things?

Better data rate?

- More frequency bands
 - Not allowed...
- Wider channel width
 - More bandwidth available
- Denser modulation
 - More bits/symbol
- More spatial streams
 - More link capacity
- What else? Think outside the box

Better channel utilization?

- Big improvements with WiFi 6
 OFDMA, but can we do better?
- What if a section if my channel is blocked?
 - Can we work around it?
- Is channel still underutilized?
 - If we are clever with RUs, what can we do?

WiFi 7 headliner features

- Multi-Link Operation (MLO)
- Multi-Resource Unit (multi-RU)
- Multi-RU puncturing
- General improvements
 - Wider channels
 - More MCS levels
 - More MIMO streams
 - o etc.

WiFi 7 MLO

- You can use multiple links to communicate with a pair of devices!
- Different configurations possible
- Capabilities vary from device to device
- What can we do with this?

WiFi 7 MLO - how could we use this?

- Sending more data
 - Simultaneously send on multiple links
- Simultaneous Tx/Rx
 - Send on one link, listen on another
- Pick band based on task
 - Demanding tasks get higher data rate?
- Pick band based on channel conds
 - o If one band is slammed, use another
- Redundant transmission
- What do you think?

MLO w/ multiple radios: Multi Link Multiple Radio (MLMR)

STR: Simultaneous Tx & Rx

NSTR: Non-Simultaneous Tx & Rx

MLO w/ single radio - Multi Link Single Radio (MLSR)

MLSR: Multi Link Single Radio

E-MLSR: Extended MLSR

Tx or Rx on one link at a time

Tx on one link Rx on (up to) two

Preamble puncturing

- Now required in WiFi 7
- Lets you "snip out" sections of channel which are in use
 - For example, by radar
- Don't need perfectly contiguous channel
- However:
 - Not supported for all channel sizes
 - May not be available on all bands

Multi-RU

- Multiple RUs can be assigned to a single user
- Potential for greater data rate and channel utilization
- RU allocation scheme dependent on the number of users to handle, channel bandwidth, etc.

Expectations vs reality

- Higher MCS nice, but can it really be used outside of ideal conditions?
- More MIMO is nice, but do devices support it?
- Devices support a wide range of features
- A previous CS 439 group did a project on this!

New challenges: time for research?

Scheduling

- Given two multi-link devices, which channel should you send traffic down at a given time?
- What goal should we prioritize for scheduling?
 Maximize throughput, minimize power, etc.

Power usage

- Keeping multiple radios on takes up a lot of power.
 When is this worth it?
- What is the overhead for radio startup, etc.
- Can you think of any?

Obstacles

- Much of the scheduling, rate adaptation, etc. is often in the firmware!
 - Firmware is usually closed-source
 - Hard to poke at
- Development boards still have immature drivers/firmware/etc.
 - Is device functioning suboptimally due to environment or bugs?

