
CS 439: Wireless Networking

Transport Layer – dealing with errors and unreliability

© CS 439 Staff, University of Illinois Fall 2024



Fall 2024© CS 439 Staff, University of Illinois

Reliable Transmission

Hello!

My

computer’s

name

is

Alice.

Hello!

Alice.

Alice Bob



Fall 2024© CS 439 Staff, University of Illinois

Reliable Transmission

Hello!

My

Computer’s

name

is

Alice.

My

name

is

Alice.Alice Bob



Reliable Transmission
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 Suppose error protection identifies valid and 
invalid packets
 How?

 Can we make the channel appear reliable?
 Insure packet delivery
 Maintain packet order
 Provide reliability at full link capacity



Reliable Transmission Outline
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 Fundamentals of Automatic Repeat reQuest 
(ARQ) algorithms
 A family of algorithms that provide reliability 

through retransmission

 ARQ algorithms (simple to complex)
 stop-and-wait
 sliding window
 go-back-n
 selective repeat
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Terminology
 Acknowledgement (ACK)
 Receiver tells the sender when a frame is received
 Selective acknowledgement (SACK)
 Specifies set of frames received

 Cumulative acknowledgement (ACK)
 Have received specified frame and all previous

 Timeout (TO)
 Sender decides the frame (or ACK) was lost
 Sender can try again
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Stop-and-Wait
 Basic idea

1. Send a frame
2. Wait for an ACK or TO
3. If TO, go to 1
4. If ACK, get new frame, go to 1
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Stop-and-Wait: Success
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What can go 
wrong?

How will it affect 
our protocol?

How long should 
the timeout be?
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Stop-and-Wait: Lost Frame
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Stop-and-Wait: Lost ACK
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Stop-and-Wait: Delayed Frame
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How can receiver 
distinguish between 

two frames?

How many bits do you 
need for sequence 

numbers?



Fall 2024© CS 439 Staff, University of Illinois

Stop-and-Wait
 Goal
 Guaranteed, at-most-once delivery

 Protocol Challenges
 Dropped frame/ACK
 Duplicate frame/ACK

 Requirements
 1-bit sequence numbers (if physical network maintains 

order)
 sender tracks frame ID to send
 receiver tracks next frame ID expected
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Stop-and-Wait
 We have achieved
 Frames delivered reliably and in order
 Is that enough?

 Problem
 Only allows one outstanding frame

 Does not keep the pipe full
 Example

 100ms RTT
 One frame per RTT = 1KB
 1024x8x10 = 81920 kbps
 Regardless of link bandwidth!



Stop-and-Wait
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sender receiver

RTT 

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next 
packet, t = RTT + L / R
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Keeping the Pipe Full
sender receiver

RTT 

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next 
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

Increase utilization
by a factor of 3!
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Concepts

 Consider an ordered stream of data frames
 Stop-and-Wait
 Window of one frame
 Slides along stream over time

Time
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Concepts
 Sliding Window Protocol
 Multiple-frame send window
 Multiple frame receive window

Time
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Sliding Window
 Send Window
 Fixed length
 Starts at earliest unacknowledged frame
 Only frames in window are active

Time

Sent and 
acknowledged

Sent and not 
acknowledged

Available, outside 
send window Unavailable
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Sliding Window
 Receive Window
 Fixed length (unrelated to send window)
 Starts at earliest frame not received
 Only frames in window accepted

Received and 
acknowledged

Received and not 
acknowledged

Received, outside 
receive window Not yet received

Time
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Sliding Window Terminology
 Sender Parameters
 Send Window Size (SWS)
 Last Acknowledgement Received (LAR)
 Last Frame Sent (LFS)

SWS = 4

LAR = 14 LFS = 18

13 14 15 16 17 18 19 20 21 22 23 24

Time
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Sliding Window Terminology
 Receiver Parameters
 Receive Window Size (RWS)
 Next Frame Expected (NFE)
 Last Frame Acceptable (LFA)

RWS = 6

NFE = 4 LFA = 9

2 3 5 7 10 11 12 13

Time

4 6 8 9



Fall 2024© CS 439 Staff, University of Illinois

SWS = 4

LAR = 14 LFS = 18

13 14 15 16 17 18 19 20 21 22 23 24

Time

Receive ACK 16

SWS = 4

LAR = 14 LFS = 18

13 14 15 16 17 18 19 20 21 22 23 24

TimeSWS = 4

LAR = 16 LFS = 20

13 17 18 19 20 21 22 23 24

Time

14 15 16

Sliding Window Details
 Sender Tasks
 Assign sequence numbers
 On ACK Arrival
 Advance LAR
 Slide window
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Sliding Window Details
 Receiver Tasks
 On Frame Arrival (N)
 Silently discard if outside of window
 N < NFE (NACK possible, too)
 N >= NFE + RWS

 Send cumulative ACK if within window

RWS = 6

NFE = 4 LFA = 9

2 3 5 7 10 11 12 13

Time

4 6 8 9

Receive Frame 6

Send ACK 3

Receive Frame 4

64

Send ACK 7
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Sliding Window Details
 Receiver Tasks
 On Frame Arrival (N)
 Silently discard if outside of window
 N < NFE (NACK possible, too)
 N >= NFE + RWS

 Send cumulative ACK if within window

RWS = 6

NFE = 8 LFA = 13

2 3 7 10 11 12 13

Time

4 8 95 6



Fall 2024© CS 439 Staff, University of Illinois

Sliding Window Details
 Sequence number space
 Finite number, so wrap around
 Need space larger than SWS (outstanding frames)
 In fact, need twice as large



Window Sizes
 How big should we make SWS?
 Compute from delay x bandwidth

 How big should we make RWS?
 Depends on buffer capacity of receiver
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Delay x Bandwidth Product - Revisited
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 Amount of data in “pipe”
 channel = pipe
 delay = length
 bandwidth = area of a cross section
 bandwidth x delay product = volume

Bandwidth

Delay



Delay x Bandwidth Product
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 Bandwidth x delay product
 How many bits the sender must transmit before 

the first bit arrives at the receiver if the sender 
keeps the pipe full

 Takes another one-way latency to receive a 
response from the receiver

A B

4567891011 123

15 16 17 18 19 20 21 2212 13 14



ARQ Algorithm Classification
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 Three Types:
 Stop-and-Wait: SWS = 1 RWS = 1
 Go-Back-N:  SWS = N RWS = 1
 Selective Repeat: SWS = N RWS = M
 Usually M = N

Selective Repeat
Go-Back-N

Stop-And-Wait
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Sliding Window Variations: Go-Back-N
 SWS = N, RWS = 1
 Receiver only buffers one frame
 If a frame is lost, the sender may need to retransmit 

up to N frames
 i.e., sender “goes back” N frames

 Variations
 How long is the frame timeout?
 Does receiver send NACK for out-of-sequence frame?
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Go-Back-N: Cumulative ACKs

A

B

Packets 2,3,4,5 
are 

retransmitted

loss

Timeout for Packet 2



Sliding Window Variations: Selective Repeat
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 SWS = N, RWS = M
 Receiver individually acknowledges all correctly 

received frames
 Buffers up to M frames, as needed, for eventual in-order 

delivery to upper layer
 If a frame is lost, sender must only resend
 Frames lost within the receive window

 Variations
 How long is the frame timeout?
 Use cumulative or per-frame ACK?
 Does protocol adapt timeouts?
 Does protocol adapt SWS and/or RWS?



Selective Repeat
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A

B

Packet 2 is 
retransmitted

loss
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Roles of a Sliding Window Protocol
 Reliable delivery on an unreliable link
 Core function

 Preserve delivery order
 Controlled by the receiver

 Flow control
 Allow receiver to throttle sender

 Separation of Concerns
 Must be able to distinguish between different functions that are 

sometimes rolled into one mechanism



TCP Data Transport
 Data broken into segments
 Limited by maximum segment size (MSS)
 Defaults to 352 bytes
 Negotiable during connection setup
 Typically set to 

 MTU of directly connected network – size of TCP and IP headers

 Three events cause a segment to be sent
 ≥ MSS bytes of data ready to be sent
 Explicit PUSH operation by application
 Periodic timeout
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TCP Byte Stream

Application 
process

Application 
process

TCP TCP

TCP Segment TCP Segment TCP Segment…

Write 
bytes

Read 
bytes

Send buffer Recv buffer



ACKing and Sequence Numbers
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 Sender sends packet 
 Data starts with sequence number X
 Packet contains B bytes
 X, X+1, X+2, ….X+B-1

byte X byte X+B - 1

B bytes



ACKing and Sequence Numbers
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 Upon receipt of packet, receiver sends an ACK
  If all data prior to X already received:
 ACK acknowledges X+B (because that is next expected 

byte)

byte X+B

B bytes



ACKing and Sequence Numbers

Fall 2024© CS 439 Staff, University of Illinois

 Upon receipt of packet, receiver sends an ACK
 If highest byte already received is some smaller 

value Y
 ACK acknowledges Y+1
 Even if this has been ACKed before

byte Y + 1

B bytes

byte Y



TCP Sliding Window Protocol
 Sequence numbers
 Indices into byte stream

 ACK sequence number 
 Actually next byte expected as opposed to last byte 

received
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TCP Sliding Window Protocol
 Advertised window
 Enables dynamic receive window size

 Receive buffers
 Data ready for delivery to application until requested
 Out-of-order data to maximum buffer capacity

 Sender buffers
 Unacknowledged data
 Unsent data out to maximum buffer capacity
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TCP Sliding Window Protocol – Sender Side
 LastByteAcked <= LastByteSent
 LastByteSent <= LastByteWritten
 Buffer bytes between LastByteAcked and LastByteWritten

First unacknowledged byte Last byte sent

Data available, but 
outside window

Maximum buffer size

Advertised window
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TCP Sliding Window Protocol – Receiver Side
 LastByteRead <  NextByteExpected

 NextByteExpected <= LastByteRcvd + 1

 Buffer bytes between NextByteRead and LastByteRcvd

Next byte to be read by application
Next byte expected (ACK value)

Buffered, out-of-order data

Maximum buffer size

Advertised window



Flow Control vs. Congestion Control
 Flow control
 Preventing senders from overrunning the capacity of the receivers

 Congestion control
 Preventing too much data from being injected into the network, causing 

switches or links to become overloaded

 Which one does TCP provide?
 TCP provides both
 Flow control based on advertised window
 Congestion control discussed later in class
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Advertised Window Limits Rate
 W = window size
 Sender can send no faster than W/RTT bytes/sec
 Receiver implicitly limits sender to rate that 

receiver can sustain
 If sender is going too fast, window advertisements 

get smaller & smaller
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Reasons for Retransmission
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How Long Should Sender Wait?
 Sender sets a timeout to wait for an ACK
 Too short
 wasted retransmissions

 Too long
 excessive delays when packet lost
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TCP Round Trip Time and Timeout
 How should TCP set its 

timeout value?
 Longer than RTT

 But RTT varies

 Too short
 Premature timeout
 Unnecessary retransmissions

 Too long
 Slow reaction to segment loss

 Estimating RTT
 SampleRTT

 Measured time from segment 
transmission until ACK receipt

 Will vary
 Want smoother estimated RTT

 Average several recent 
measurements
 Not just current SampleRTT
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TCP Congestion Control
 Idea
 Assumes best-effort network 
 Each source determines network capacity for itself
 Implicit feedback
 ACKs pace transmission (self-clocking)

 Challenge
 Determining initial available capacity
 Adjusting to changes in capacity in a timely manner
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TCP Congestion Control
 Basic idea
 Add notion of congestion window
 Effective window is smaller of
 Advertised window (flow control)
 Congestion window (congestion control)

 Changes in congestion window size
 Slow increases to absorb new bandwidth
 Quick decreases to eliminate congestion
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TCP Congestion Control
 Specific strategy
 Self-clocking

 Send data only when outstanding data ACK’d
 Equivalent to send window limitation mentioned

receiversender
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TCP Congestion Control
 Specific strategy
 Self-clocking

 Send data only when outstanding data ACK’d
 Equivalent to send window limitation mentioned

 Growth
 Add one maximum segment size (MSS) per congestion window of 

data ACK’d
 It’s really done this way, at least in Linux:
 see tcp_cong_avoid in tcp_input.c.  
 Actually, every ack for new data is treated as an MSS ACK’d

 Known as additive increase
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TCP Congestion Control
 Specific strategy (continued)
 Decrease
 Cut window in half when timeout occurs
 In practice, set window = window /2 
 Known as multiplicative decrease

 Additive increase, multiplicative decrease (AIMD)



Additive Increase/ Multiplicative Decrease
 Tools
 React to observance of congestion
 Probe channel to detect more resources

 Observation
 On notice of congestion

 Decreasing too slowly will not be reactive enough

 On probe of network
 Increasing too quickly will overshoot limits
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Additive Increase/ Multiplicative Decrease
 New TCP state variable
 CongestionWindow

 Similar to AdvertisedWindow for flow control
 Limits how much data source can have in transit

 MaxWin = MIN(CongestionWindow, AdvertisedWindow)
 EffWin = MaxWin - (LastByteSent - LastByteAcked)
 TCP can send no faster then the slowest component, network or destination

 Idea
 Increase CongestionWindow when congestion goes down
 Decrease CongestionWindow when congestion goes up
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Additive Increase/ Multiplicative Decrease
 Question
 How does the source determine whether or not the 

network is congested?

 Answer
 Timeout signals packet loss
 Packet loss is rarely due to transmission error (on wired 

lines)
 Lost packet implies congestion!



AIMD – Sawtooth Trace
 Packet loss is seen as sign of congestion and results in a 

multiplicative rate decrease 
 Factor of 2

 TCP periodically probes for available bandwidth by increasing 
its rate
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TCP Start Up Behavior
 How should TCP start sending data?
 AIMD is good for channels operating at capacity
 AIMD can take a long time to ramp up to full capacity from 

scratch
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It could take a long time 
to get started!
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TCP Start Up Behavior
 How should TCP start sending data?
 AIMD is good for channels operating at capacity
 AIMD can take a long time to ramp up to full capacity from 

scratch
 Use Slow Start to increase window rapidly from a cold start



TCP Start Up Behavior: Slow Start
 Initialization of the congestion window
 Congestion  window should start small
 Avoid congestion due to new connections

 Start at 1 MSS, 
 Initially, CWND is 1 MSS
 Initial sending rate is MSS/RTT

 Reset to 1 MSS with each timeout 
 timeouts are coarse-grained, ~1/2 sec
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TCP Start Up Behavior: Slow Start
 Growth of the congestion window
 Linear growth could be pretty wasteful
 Might be much less than the actual bandwidth
 Linear increase takes a long time to accelerate

 Start slow but then grow fast
 Sender starts at a slow rate
 Increase the rate exponentially
 Until the first loss event
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Slow Start Example
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D A D D A A D D

Src

Dest

D D

1 2 43

A A A A

8CWD size:



Slow Start
 Used
 When first starting connection
 When connection times out

 Why is it called slow-start? 
 Because TCP originally had no congestion control 

mechanism
 The source would just start by sending a whole window’s 

worth of data
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TCP Congestion Control
 Maintain threshold window size
 Threshold value

 Initially set to maximum window size
 Set to 1/2 of current window on timeout

 Use multiplicative increase
 When congestion window smaller than threshold
 Double window for each window ACK’d

 In practice
 Increase congestion window by one MSS for each ACK of new data (or 

N bytes for N bytes)
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Slow Start

 How long should the exponential 
increase from slow start continue?
 Use CongestionThreshold 

as target window size

 Estimates network capacity
 When CongestionWindow 

reaches 
CongestionThreshold switch 
to additive increase

Exponential
“slow start”

Linear probing
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Slow Start

 Initial values
 CongestionThreshold = 8

 CongestionWindow = 1

 Loss after transmission 7
 CongestionWindow currently 12

 Set Congestionthreshold = 
CongestionWindow/2

 Set CongestionWindow = 1
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Slow Start
 Example trace of CongestionWindow 
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 Problem
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 Can lose half CongestionWindow of data

CW flattens out due to loss

Slow start until CW = CT

Linear increase

Timeout: CT = CT/2 = 11 CW = 1
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Fast Retransmit and Fast Recovery

 Problem
 Coarse-grain TCP 

timeouts lead to idle 
periods

 Solution
 Fast retransmit: use 

duplicate ACKs to 
trigger retransmission

Packet 1
Packet 2
Packet 3
Packet 4

Packet 5
Packet 6

Retransmit
packet 3

ACK 1
ACK 2

ACK 2
ACK 2

ACK 6

ACK 2

Sender Receiver
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Fast Retransmit and Fast Recovery
 Send ACK for each segment received
 When duplicate ACK’s received
 Resend lost segment immediately
 Do not wait for timeout
 In practice, retransmit on 3rd duplicate

 Fast recovery
 When fast retransmission occurs, skip slow start
 Congestion window becomes 1/2 previous
 Start additive increase immediately
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Fast Retransmit and Fast Recovery
 Results

 Fast Recovery
 Bypass slow start phase
 Increase immediately to one half last successful 
CongestionWindow (ssthresh)
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TCP Congestion Window Trace
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