
CS 439: Wireless Networking

Transport Layer – dealing with errors and unreliability

© CS 439 Staff, University of Illinois Fall 2024

Fall 2024© CS 439 Staff, University of Illinois

Reliable Transmission

Hello!

My

computer’s

name

is

Alice.

Hello!

Alice.

Alice Bob

Fall 2024© CS 439 Staff, University of Illinois

Reliable Transmission

Hello!

My

Computer’s

name

is

Alice.

My

name

is

Alice.Alice Bob

Reliable Transmission

Fall 2024© CS 439 Staff, University of Illinois

 Suppose error protection identifies valid and
invalid packets
 How?

 Can we make the channel appear reliable?
 Insure packet delivery
 Maintain packet order
 Provide reliability at full link capacity

Reliable Transmission Outline

Fall 2024© CS 439 Staff, University of Illinois

 Fundamentals of Automatic Repeat reQuest
(ARQ) algorithms
 A family of algorithms that provide reliability

through retransmission

 ARQ algorithms (simple to complex)
 stop-and-wait
 sliding window
 go-back-n
 selective repeat

Fall 2024© CS 439 Staff, University of Illinois

Terminology
 Acknowledgement (ACK)
 Receiver tells the sender when a frame is received
 Selective acknowledgement (SACK)
 Specifies set of frames received

 Cumulative acknowledgement (ACK)
 Have received specified frame and all previous

 Timeout (TO)
 Sender decides the frame (or ACK) was lost
 Sender can try again

Fall 2024© CS 439 Staff, University of Illinois

Stop-and-Wait
 Basic idea

1. Send a frame
2. Wait for an ACK or TO
3. If TO, go to 1
4. If ACK, get new frame, go to 1

Fall 2024© CS 439 Staff, University of Illinois

Stop-and-Wait: Success

Sender

Ti
m

eo
ut

Ti
m

e
Receiver

RTT

What can go
wrong?

How will it affect
our protocol?

How long should
the timeout be?

Fall 2024© CS 439 Staff, University of Illinois

Stop-and-Wait: Lost Frame

Sender

Ti
m

eo
ut

Ti
m

e
Receiver

Ti
m

eo
ut

RTT

Fall 2024© CS 439 Staff, University of Illinois

Stop-and-Wait: Lost ACK

Sender

Ti
m

eo
ut

Ti
m

e
Receiver

Ti
m

eo
ut

RTT

Fall 2024© CS 439 Staff, University of Illinois

Stop-and-Wait: Delayed Frame

Sender

Ti
m

eo
ut

Ti
m

e
Receiver

Ti
m

eo
ut

RTT

How can receiver
distinguish between

two frames?

How many bits do you
need for sequence

numbers?

Fall 2024© CS 439 Staff, University of Illinois

Stop-and-Wait
 Goal
 Guaranteed, at-most-once delivery

 Protocol Challenges
 Dropped frame/ACK
 Duplicate frame/ACK

 Requirements
 1-bit sequence numbers (if physical network maintains

order)
 sender tracks frame ID to send
 receiver tracks next frame ID expected

Fall 2024© CS 439 Staff, University of Illinois

Stop-and-Wait
 We have achieved
 Frames delivered reliably and in order
 Is that enough?

 Problem
 Only allows one outstanding frame

 Does not keep the pipe full
 Example

 100ms RTT
 One frame per RTT = 1KB
 1024x8x10 = 81920 kbps
 Regardless of link bandwidth!

Stop-and-Wait

Fall 2024© CS 439 Staff, University of Illinois

sender receiver

RTT

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

U
sender =

L / R
RTT + L / R

L / R

RTT + L / R

U

=

sender

Fall 2024© CS 439 Staff, University of Illinois

Keeping the Pipe Full
sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

Increase utilization
by a factor of 3!

U
sender =

3 * L / R
RTT + L / R

3 * L / R

RTT + L / R

U

=

sender

Fall 2024© CS 439 Staff, University of Illinois

Concepts

 Consider an ordered stream of data frames
 Stop-and-Wait
 Window of one frame
 Slides along stream over time

Time

Fall 2024© CS 439 Staff, University of Illinois

Concepts
 Sliding Window Protocol
 Multiple-frame send window
 Multiple frame receive window

Time

Fall 2024© CS 439 Staff, University of Illinois

Sliding Window
 Send Window
 Fixed length
 Starts at earliest unacknowledged frame
 Only frames in window are active

Time

Sent and
acknowledged

Sent and not
acknowledged

Available, outside
send window Unavailable

Fall 2024© CS 439 Staff, University of Illinois

Sliding Window
 Receive Window
 Fixed length (unrelated to send window)
 Starts at earliest frame not received
 Only frames in window accepted

Received and
acknowledged

Received and not
acknowledged

Received, outside
receive window Not yet received

Time

Fall 2024© CS 439 Staff, University of Illinois

Sliding Window Terminology
 Sender Parameters
 Send Window Size (SWS)
 Last Acknowledgement Received (LAR)
 Last Frame Sent (LFS)

SWS = 4

LAR = 14 LFS = 18

13 14 15 16 17 18 19 20 21 22 23 24

Time

Fall 2024© CS 439 Staff, University of Illinois

Sliding Window Terminology
 Receiver Parameters
 Receive Window Size (RWS)
 Next Frame Expected (NFE)
 Last Frame Acceptable (LFA)

RWS = 6

NFE = 4 LFA = 9

2 3 5 7 10 11 12 13

Time

4 6 8 9

Fall 2024© CS 439 Staff, University of Illinois

SWS = 4

LAR = 14 LFS = 18

13 14 15 16 17 18 19 20 21 22 23 24

Time

Receive ACK 16

SWS = 4

LAR = 14 LFS = 18

13 14 15 16 17 18 19 20 21 22 23 24

TimeSWS = 4

LAR = 16 LFS = 20

13 17 18 19 20 21 22 23 24

Time

14 15 16

Sliding Window Details
 Sender Tasks
 Assign sequence numbers
 On ACK Arrival
 Advance LAR
 Slide window

Fall 2024© CS 439 Staff, University of Illinois

Sliding Window Details
 Receiver Tasks
 On Frame Arrival (N)
 Silently discard if outside of window
 N < NFE (NACK possible, too)
 N >= NFE + RWS

 Send cumulative ACK if within window

RWS = 6

NFE = 4 LFA = 9

2 3 5 7 10 11 12 13

Time

4 6 8 9

Receive Frame 6

Send ACK 3

Receive Frame 4

64

Send ACK 7

Fall 2024© CS 439 Staff, University of Illinois

Sliding Window Details
 Receiver Tasks
 On Frame Arrival (N)
 Silently discard if outside of window
 N < NFE (NACK possible, too)
 N >= NFE + RWS

 Send cumulative ACK if within window

RWS = 6

NFE = 8 LFA = 13

2 3 7 10 11 12 13

Time

4 8 95 6

Fall 2024© CS 439 Staff, University of Illinois

Sliding Window Details
 Sequence number space
 Finite number, so wrap around
 Need space larger than SWS (outstanding frames)
 In fact, need twice as large

Window Sizes
 How big should we make SWS?
 Compute from delay x bandwidth

 How big should we make RWS?
 Depends on buffer capacity of receiver

Fall 2024© CS 439 Staff, University of Illinois

Delay x Bandwidth Product - Revisited

Fall 2024© CS 439 Staff, University of Illinois

 Amount of data in “pipe”
 channel = pipe
 delay = length
 bandwidth = area of a cross section
 bandwidth x delay product = volume

Bandwidth

Delay

Delay x Bandwidth Product

Fall 2024© CS 439 Staff, University of Illinois

 Bandwidth x delay product
 How many bits the sender must transmit before

the first bit arrives at the receiver if the sender
keeps the pipe full

 Takes another one-way latency to receive a
response from the receiver

A B

4567891011 123

15 16 17 18 19 20 21 2212 13 14

ARQ Algorithm Classification

Fall 2024© CS 439 Staff, University of Illinois

 Three Types:
 Stop-and-Wait: SWS = 1 RWS = 1
 Go-Back-N: SWS = N RWS = 1
 Selective Repeat: SWS = N RWS = M
 Usually M = N

Selective Repeat
Go-Back-N

Stop-And-Wait

Fall 2024© CS 439 Staff, University of Illinois

Sliding Window Variations: Go-Back-N
 SWS = N, RWS = 1
 Receiver only buffers one frame
 If a frame is lost, the sender may need to retransmit

up to N frames
 i.e., sender “goes back” N frames

 Variations
 How long is the frame timeout?
 Does receiver send NACK for out-of-sequence frame?

Fall 2024© CS 439 Staff, University of Illinois

Go-Back-N: Cumulative ACKs

A

B

Packets 2,3,4,5
are

retransmitted

loss

Timeout for Packet 2

Sliding Window Variations: Selective Repeat

Fall 2024© CS 439 Staff, University of Illinois

 SWS = N, RWS = M
 Receiver individually acknowledges all correctly

received frames
 Buffers up to M frames, as needed, for eventual in-order

delivery to upper layer
 If a frame is lost, sender must only resend
 Frames lost within the receive window

 Variations
 How long is the frame timeout?
 Use cumulative or per-frame ACK?
 Does protocol adapt timeouts?
 Does protocol adapt SWS and/or RWS?

Selective Repeat

Fall 2024© CS 439 Staff, University of Illinois

A

B

Packet 2 is
retransmitted

loss

Fall 2024© CS 439 Staff, University of Illinois

Roles of a Sliding Window Protocol
 Reliable delivery on an unreliable link
 Core function

 Preserve delivery order
 Controlled by the receiver

 Flow control
 Allow receiver to throttle sender

 Separation of Concerns
 Must be able to distinguish between different functions that are

sometimes rolled into one mechanism

TCP Data Transport
 Data broken into segments
 Limited by maximum segment size (MSS)
 Defaults to 352 bytes
 Negotiable during connection setup
 Typically set to

 MTU of directly connected network – size of TCP and IP headers

 Three events cause a segment to be sent
 ≥ MSS bytes of data ready to be sent
 Explicit PUSH operation by application
 Periodic timeout

Fall 2024© CS 439 Staff, University of Illinois

Fall 2024© CS 439 Staff, University of Illinois

TCP Byte Stream

Application
process

Application
process

TCP TCP

TCP Segment TCP Segment TCP Segment…

Write
bytes

Read
bytes

Send buffer Recv buffer

ACKing and Sequence Numbers

Fall 2024© CS 439 Staff, University of Illinois

 Sender sends packet
 Data starts with sequence number X
 Packet contains B bytes
 X, X+1, X+2, ….X+B-1

byte X byte X+B - 1

B bytes

ACKing and Sequence Numbers

Fall 2024© CS 439 Staff, University of Illinois

 Upon receipt of packet, receiver sends an ACK
 If all data prior to X already received:
 ACK acknowledges X+B (because that is next expected

byte)

byte X+B

B bytes

ACKing and Sequence Numbers

Fall 2024© CS 439 Staff, University of Illinois

 Upon receipt of packet, receiver sends an ACK
 If highest byte already received is some smaller

value Y
 ACK acknowledges Y+1
 Even if this has been ACKed before

byte Y + 1

B bytes

byte Y

TCP Sliding Window Protocol
 Sequence numbers
 Indices into byte stream

 ACK sequence number
 Actually next byte expected as opposed to last byte

received

Fall 2024© CS 439 Staff, University of Illinois

TCP Sliding Window Protocol
 Advertised window
 Enables dynamic receive window size

 Receive buffers
 Data ready for delivery to application until requested
 Out-of-order data to maximum buffer capacity

 Sender buffers
 Unacknowledged data
 Unsent data out to maximum buffer capacity

Fall 2024© CS 439 Staff, University of Illinois

Fall 2024© CS 439 Staff, University of Illinois

TCP Sliding Window Protocol – Sender Side
 LastByteAcked <= LastByteSent
 LastByteSent <= LastByteWritten
 Buffer bytes between LastByteAcked and LastByteWritten

First unacknowledged byte Last byte sent

Data available, but
outside window

Maximum buffer size

Advertised window

Fall 2024© CS 439 Staff, University of Illinois

TCP Sliding Window Protocol – Receiver Side
 LastByteRead < NextByteExpected

 NextByteExpected <= LastByteRcvd + 1

 Buffer bytes between NextByteRead and LastByteRcvd

Next byte to be read by application
Next byte expected (ACK value)

Buffered, out-of-order data

Maximum buffer size

Advertised window

Flow Control vs. Congestion Control
 Flow control
 Preventing senders from overrunning the capacity of the receivers

 Congestion control
 Preventing too much data from being injected into the network, causing

switches or links to become overloaded

 Which one does TCP provide?
 TCP provides both
 Flow control based on advertised window
 Congestion control discussed later in class

Fall 2024© CS 439 Staff, University of Illinois

Advertised Window Limits Rate
 W = window size
 Sender can send no faster than W/RTT bytes/sec
 Receiver implicitly limits sender to rate that

receiver can sustain
 If sender is going too fast, window advertisements

get smaller & smaller

Fall 2024© CS 439 Staff, University of Illinois

Reasons for Retransmission

Fall 2024© CS 439 Staff, University of Illinois
Ti

m
eo

ut
Ti

m
eo

ut

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

ACK lost
DUPLICATE

PACKET

Packet lost Early timeout
DUPLICATE
PACKETS

How Long Should Sender Wait?
 Sender sets a timeout to wait for an ACK
 Too short
 wasted retransmissions

 Too long
 excessive delays when packet lost

Fall 2024© CS 439 Staff, University of Illinois

TCP Round Trip Time and Timeout
 How should TCP set its

timeout value?
 Longer than RTT

 But RTT varies

 Too short
 Premature timeout
 Unnecessary retransmissions

 Too long
 Slow reaction to segment loss

 Estimating RTT
 SampleRTT

 Measured time from segment
transmission until ACK receipt

 Will vary
 Want smoother estimated RTT

 Average several recent
measurements
 Not just current SampleRTT

Fall 2024© CS 439 Staff, University of Illinois

TCP Congestion Control
 Idea
 Assumes best-effort network
 Each source determines network capacity for itself
 Implicit feedback
 ACKs pace transmission (self-clocking)

 Challenge
 Determining initial available capacity
 Adjusting to changes in capacity in a timely manner

Fall 2024© CS 439 Staff, University of Illinois

TCP Congestion Control
 Basic idea
 Add notion of congestion window
 Effective window is smaller of
 Advertised window (flow control)
 Congestion window (congestion control)

 Changes in congestion window size
 Slow increases to absorb new bandwidth
 Quick decreases to eliminate congestion

Fall 2024© CS 439 Staff, University of Illinois

Fall 2024© CS 439 Staff, University of Illinois

TCP Congestion Control
 Specific strategy
 Self-clocking

 Send data only when outstanding data ACK’d
 Equivalent to send window limitation mentioned

receiversender

Fall 2024© CS 439 Staff, University of Illinois

TCP Congestion Control
 Specific strategy
 Self-clocking

 Send data only when outstanding data ACK’d
 Equivalent to send window limitation mentioned

 Growth
 Add one maximum segment size (MSS) per congestion window of

data ACK’d
 It’s really done this way, at least in Linux:
 see tcp_cong_avoid in tcp_input.c.
 Actually, every ack for new data is treated as an MSS ACK’d

 Known as additive increase

Fall 2024© CS 439 Staff, University of Illinois

TCP Congestion Control
 Specific strategy (continued)
 Decrease
 Cut window in half when timeout occurs
 In practice, set window = window /2
 Known as multiplicative decrease

 Additive increase, multiplicative decrease (AIMD)

Additive Increase/ Multiplicative Decrease
 Tools
 React to observance of congestion
 Probe channel to detect more resources

 Observation
 On notice of congestion

 Decreasing too slowly will not be reactive enough

 On probe of network
 Increasing too quickly will overshoot limits

Fall 2024© CS 439 Staff, University of Illinois

Fall 2024© CS 439 Staff, University of Illinois

Additive Increase/ Multiplicative Decrease
 New TCP state variable
 CongestionWindow

 Similar to AdvertisedWindow for flow control
 Limits how much data source can have in transit

 MaxWin = MIN(CongestionWindow, AdvertisedWindow)
 EffWin = MaxWin - (LastByteSent - LastByteAcked)
 TCP can send no faster then the slowest component, network or destination

 Idea
 Increase CongestionWindow when congestion goes down
 Decrease CongestionWindow when congestion goes up

Fall 2024© CS 439 Staff, University of Illinois

Additive Increase/ Multiplicative Decrease
 Question
 How does the source determine whether or not the

network is congested?

 Answer
 Timeout signals packet loss
 Packet loss is rarely due to transmission error (on wired

lines)
 Lost packet implies congestion!

AIMD – Sawtooth Trace
 Packet loss is seen as sign of congestion and results in a

multiplicative rate decrease
 Factor of 2

 TCP periodically probes for available bandwidth by increasing
its rate

Fall 2024© CS 439 Staff, University of Illinois

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

KB

Time (seconds)

70

30
40
50

10

10.0

Loss

halved

Fall 2024© CS 439 Staff, University of Illinois

TCP Start Up Behavior
 How should TCP start sending data?
 AIMD is good for channels operating at capacity
 AIMD can take a long time to ramp up to full capacity from

scratch

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

KB

Time (seconds)

70

30
40
50

10

10.0

It could take a long time
to get started!

Fall 2024© CS 439 Staff, University of Illinois

TCP Start Up Behavior
 How should TCP start sending data?
 AIMD is good for channels operating at capacity
 AIMD can take a long time to ramp up to full capacity from

scratch
 Use Slow Start to increase window rapidly from a cold start

TCP Start Up Behavior: Slow Start
 Initialization of the congestion window
 Congestion window should start small
 Avoid congestion due to new connections

 Start at 1 MSS,
 Initially, CWND is 1 MSS
 Initial sending rate is MSS/RTT

 Reset to 1 MSS with each timeout
 timeouts are coarse-grained, ~1/2 sec

Fall 2024© CS 439 Staff, University of Illinois

TCP Start Up Behavior: Slow Start
 Growth of the congestion window
 Linear growth could be pretty wasteful
 Might be much less than the actual bandwidth
 Linear increase takes a long time to accelerate

 Start slow but then grow fast
 Sender starts at a slow rate
 Increase the rate exponentially
 Until the first loss event

Fall 2024© CS 439 Staff, University of Illinois

Slow Start Example

Fall 2024© CS 439 Staff, University of Illinois

D A D D A A D D

Src

Dest

D D

1 2 43

A A A A

8CWD size:

Slow Start
 Used
 When first starting connection
 When connection times out

 Why is it called slow-start?
 Because TCP originally had no congestion control

mechanism
 The source would just start by sending a whole window’s

worth of data

Fall 2024© CS 439 Staff, University of Illinois

TCP Congestion Control
 Maintain threshold window size
 Threshold value

 Initially set to maximum window size
 Set to 1/2 of current window on timeout

 Use multiplicative increase
 When congestion window smaller than threshold
 Double window for each window ACK’d

 In practice
 Increase congestion window by one MSS for each ACK of new data (or

N bytes for N bytes)

Fall 2024© CS 439 Staff, University of Illinois

Fall 2024© CS 439 Staff, University of Illinois

Slow Start

 How long should the exponential
increase from slow start continue?
 Use CongestionThreshold

as target window size

 Estimates network capacity
 When CongestionWindow

reaches
CongestionThreshold switch
to additive increase

Exponential
“slow start”

Linear probing

Fall 2024© CS 439 Staff, University of Illinois

Slow Start

 Initial values
 CongestionThreshold = 8

 CongestionWindow = 1

 Loss after transmission 7
 CongestionWindow currently 12

 Set Congestionthreshold =
CongestionWindow/2

 Set CongestionWindow = 1

Fall 2024© CS 439 Staff, University of Illinois

Slow Start
 Example trace of CongestionWindow

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

KB

70

30
40
50

10

 Problem
 Have to wait for timeout
 Can lose half CongestionWindow of data

CW flattens out due to loss

Slow start until CW = CT

Linear increase

Timeout: CT = CT/2 = 11 CW = 1

Fall 2024© CS 439 Staff, University of Illinois

Fast Retransmit and Fast Recovery

 Problem
 Coarse-grain TCP

timeouts lead to idle
periods

 Solution
 Fast retransmit: use

duplicate ACKs to
trigger retransmission

Packet 1
Packet 2
Packet 3
Packet 4

Packet 5
Packet 6

Retransmit
packet 3

ACK 1
ACK 2

ACK 2
ACK 2

ACK 6

ACK 2

Sender Receiver

Fall 2024© CS 439 Staff, University of Illinois

Fast Retransmit and Fast Recovery
 Send ACK for each segment received
 When duplicate ACK’s received
 Resend lost segment immediately
 Do not wait for timeout
 In practice, retransmit on 3rd duplicate

 Fast recovery
 When fast retransmission occurs, skip slow start
 Congestion window becomes 1/2 previous
 Start additive increase immediately

Fall 2024© CS 439 Staff, University of Illinois

Fast Retransmit and Fast Recovery
 Results

 Fast Recovery
 Bypass slow start phase
 Increase immediately to one half last successful
CongestionWindow (ssthresh)

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0

KB

70

30
40
50

10

Fall 2024© CS 439 Staff, University of Illinois

TCP Congestion Window Trace

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

Time

Co
ng

es
tio

n
W

in
do

w

threshold

congestion
windowtimeouts

slow start period

additive increase

fast retransmission

	CS 439: Wireless Networking
	Reliable Transmission
	Reliable Transmission
	Reliable Transmission
	Reliable Transmission Outline
	Terminology
	Stop-and-Wait
	Stop-and-Wait: Success
	Stop-and-Wait: Lost Frame
	Stop-and-Wait: Lost ACK
	Stop-and-Wait: Delayed Frame
	Stop-and-Wait
	Stop-and-Wait
	Stop-and-Wait
	Keeping the Pipe Full
	Concepts
	Concepts
	Sliding Window
	Sliding Window
	Sliding Window Terminology
	Sliding Window Terminology
	Sliding Window Details
	Sliding Window Details
	Sliding Window Details
	Sliding Window Details
	Window Sizes
	Delay x Bandwidth Product - Revisited
	Delay x Bandwidth Product
	ARQ Algorithm Classification
	Sliding Window Variations: Go-Back-N
	Go-Back-N: Cumulative ACKs
	Sliding Window Variations: Selective Repeat
	Selective Repeat
	Roles of a Sliding Window Protocol
	TCP Data Transport
	TCP Byte Stream
	ACKing and Sequence Numbers
	ACKing and Sequence Numbers
	ACKing and Sequence Numbers
	TCP Sliding Window Protocol
	TCP Sliding Window Protocol
	TCP Sliding Window Protocol – Sender Side
	TCP Sliding Window Protocol – Receiver Side
	Flow Control vs. Congestion Control
	Advertised Window Limits Rate
	Reasons for Retransmission
	How Long Should Sender Wait?
	TCP Round Trip Time and Timeout
	TCP Congestion Control
	TCP Congestion Control
	TCP Congestion Control
	TCP Congestion Control
	TCP Congestion Control
	Additive Increase/ Multiplicative Decrease
	Additive Increase/ Multiplicative Decrease
	Additive Increase/ Multiplicative Decrease
	AIMD – Sawtooth Trace
	TCP Start Up Behavior
	TCP Start Up Behavior
	TCP Start Up Behavior: Slow Start
	TCP Start Up Behavior: Slow Start
	Slow Start Example
	Slow Start
	TCP Congestion Control
	Slow Start
	Slow Start
	Slow Start
	Fast Retransmit and Fast Recovery
	Fast Retransmit and Fast Recovery
	Fast Retransmit and Fast Recovery
	TCP Congestion Window Trace

