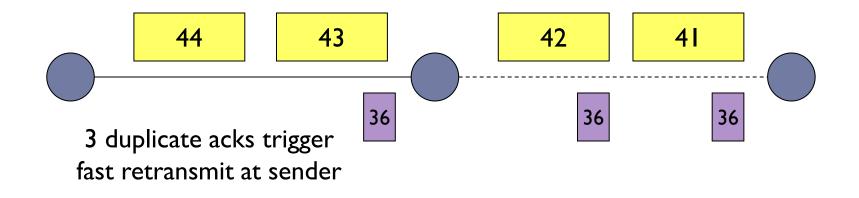
CS/ECE 439: Wireless Networking

Transport Layer – TCP over Wireless

© CS 439 Staff, University of Illinois Fall 2024

Wireless Characteristics


- Low bandwidth
- Long or variable latency
- Random Errors
 - If number of errors is small
 - May be corrected by an error correcting code
 - Excessive bit errors
 - Result in a packet being discarded, possibly before it reaches the transport layer

Random Errors

May cause fast retransmit

Example assumes delayed ack - every other packet ack'd

Random Errors

Fast retransmit results in

- Retransmission of lost packet
- Reduction in congestion window
- Reducing congestion window
 - Unnecessary response to errors
 - Reduces the throughput

Random Errors

Sometimes congestion response is appropriate

- Interference due to other users
 - Reduce congestion window
- Bad channel for a long duration
 - Let TCP backoff
 - Do not unnecessarily attempt retransmissions while the channel remains in the bad state
- But what about errors for which reducing congestion window is an inappropriate response?
 - Noise
 - Do not reduce window

Timeouts

Burst errors may cause timeouts

- If wireless link remains unavailable for extended duration, a window worth of data may be lost
 - Driving through a tunnel
 - Passing a truck
- Timeout results in slow start
 - Slow start reduces congestion window to 1 MSS, reducing throughput
 - Reduction in window in response to burst errors?

Random errors may also cause timeouts

- Multiple packet losses in a window can result in timeout when using TCP-Reno
 - And to a lesser extent when using SACK

Impact of Transmission Errors

- TCP cannot distinguish between packet losses due to congestion and transmission errors
 - Unnecessarily reduces congestion window
 - Throughput suffers

Ideal Behavior

- Ideal TCP behavior
 - Simply retransmit a packet lost due to transmission errors
 - Take no congestion control actions
 - Ideal TCP typically not realizable
- Ideal network behavior
 - Transmission errors should be hidden from the sender
 - Errors should be recovered transparently and efficiently
- Proposed schemes attempt to approximate one of the above two ideals

Techniques

Nature of actions taken to improve performance

- Hide error losses from the sender
 - Sender is unaware of error-based losses
 - \hfill Nill not reduce congestion window
- Let sender know, or determine, cause of packet loss
 - Sender knows about cause of packet loss
 - \hfill Not reduce congestion window

Techniques

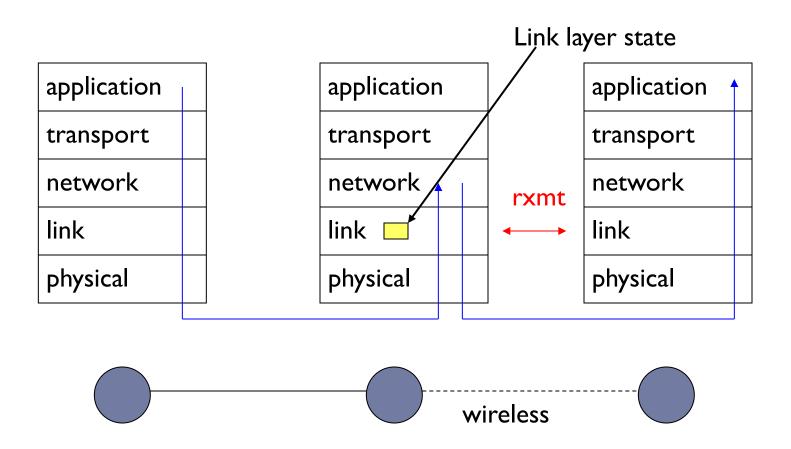
Where modifications are needed

- At the sender node only
- At the receiver node only
- At intermediate node(s) only
- Combinations of the above

Schemes

- Link level mechanisms
- Split connection approach
- TCP-Aware link layer
- TCP-Unaware approximation of TCP-aware link layer
- Explicit notification
- Receiver-based discrimination
- Sender-based discrimination

Link Layer Mechanisms: Forward Error Correction

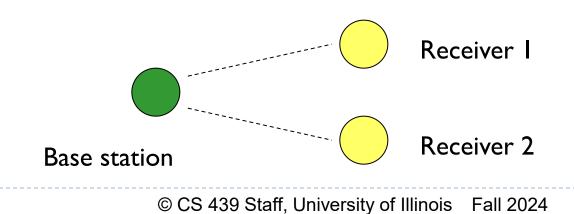

- Forward Error Correction (FEC) can be used to correct small number of errors
 - Correctable errors hidden from the TCP sender
 - FEC incurs overhead even when errors do not occur
 - Adaptive FEC schemes can reduce the overhead by choosing appropriate FEC dynamically

Link Layer Mechanisms: Link Level Retransmissions

- Retransmit a packet at the link layer, if errors are detected
- Retransmission overhead incurred only if errors occur
 - Unlike FEC overhead
- In general
 - Use FEC to correct a small number of errors
 - Use link level retransmission when FEC capability is exceeded

- How many retransmissions at the link level before giving up?
 - Finite bound -- semi-reliable link layer
 - No bound -- reliable link layer

What triggers link level retransmissions?


- Link layer timeout mechanism
- Link level acks (negative acks, dupacks, ...)
- Other mechanisms (e.g., Snoop, as discussed later)

- How much time is required for a link layer retransmission?
 - Small fraction of end-to-end TCP RTT
 - Large fraction/multiple of end-to-end TCP RTT

- Retransmissions can cause
 - Head-of-the-line blocking
 - Congestion losses

The sender's Retransmission Timeout (RTO)

- Function of measured RTT (round-trip times)
- Link level retransmits increase RTT, therefore, RTO

Infrequent errors

RTO will not account for RTT variations due to link level retransmissions

Frequent errors

Increase RTO significantly on slow wireless links

Not all connections benefit from retransmissions

- Audio
- Need to be able to specify requirements on a per-packet basis
 - Should the packet be retransmitted?
 - How many times?
- Need a standard mechanism to specify the requirements

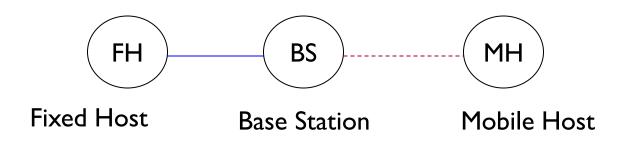
Link Layer Schemes: Summary

- When is a reliable link layer beneficial to TCP performance?
 - If TCP retransmission timeout is large enough to tolerate additional delays due to link level retransmits

Link Layer Mechanisms: Hiding Losses

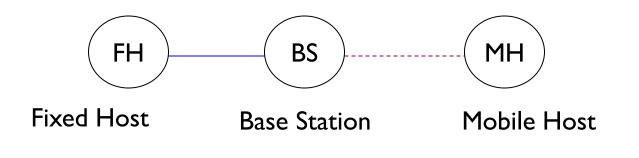
- Hide wireless losses from TCP sender
- Link layer modifications needed at both ends of wireless link
 - TCP need not be modified

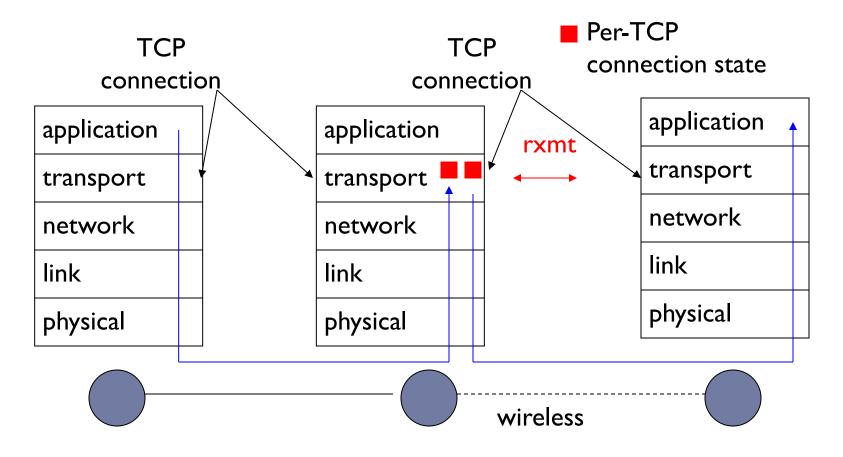
End-to-end TCP connection is broken into


- One connection on the wired part of route
- One over wireless part of the route
- A single TCP connection split into two TCP connections

If wireless link is not last on route

More than two TCP connections may be needed

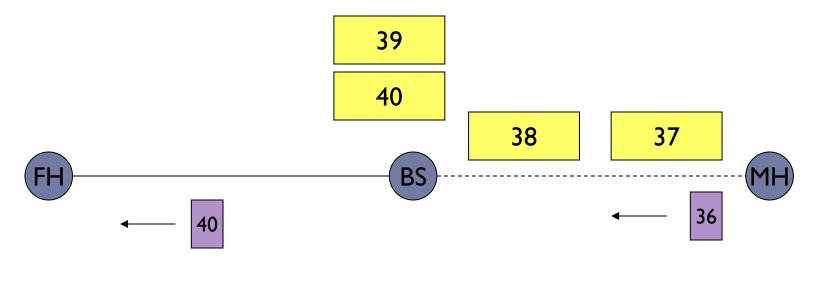

Connection between wireless host MH and fixed host (FH) goes through base station (BS)
 FH -> MH = FH -> BS + BS -> MH


- Split connection results in independent flow control for the two parts
- Flow/error control protocols, packet size, time-outs, may be different for each part

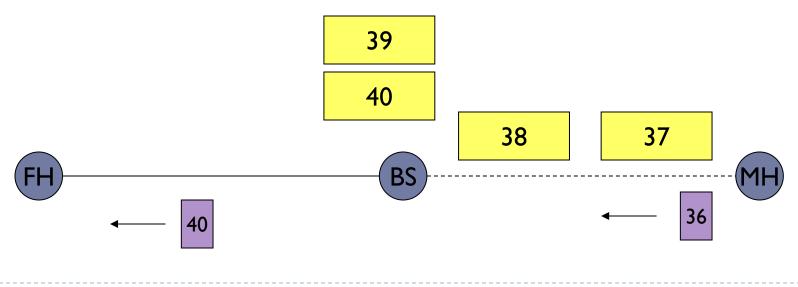
 $I TCP = \frac{1}{2}TCP + \frac{1}{2}(TCP \text{ or } XXX)$

Indirect TCP

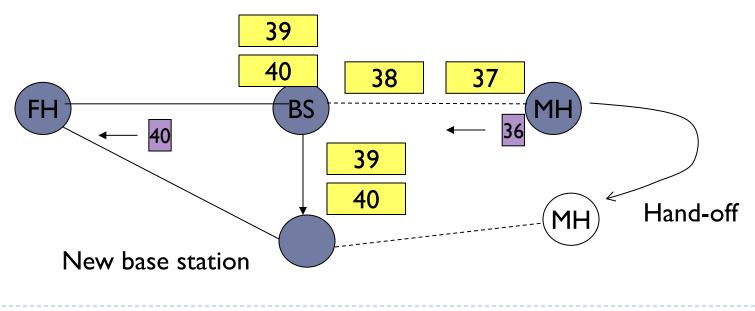
- FH -> BS connection : Standard TCP
- BS -> MH connection : Standard TCP
- Selective Repeat Protocol (SRP)
 - FH -> BS connection : standard TCP
 - BS -> FH connection : selective repeat protocol on top of UDP
 - Performance better than Indirect-TCP (I-TCP)
 - Wireless portion of connection can be tuned to wireless behavior



- BS-MH connection can be optimized independent of FH-BS connection
- Local recovery of errors
- Good performance achievable using appropriate BS-MH protocol
 - Standard TCP on BS-MH performs poorly
 - Selective acks improve performance

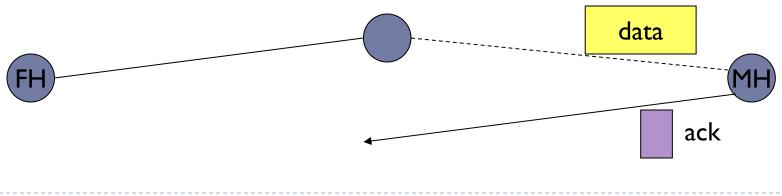

End-to-end semantics violated

- ack may be delivered to sender, before data delivered to the receiver
- May not be a problem for applications that do not rely on TCP for the end-to-end semantics



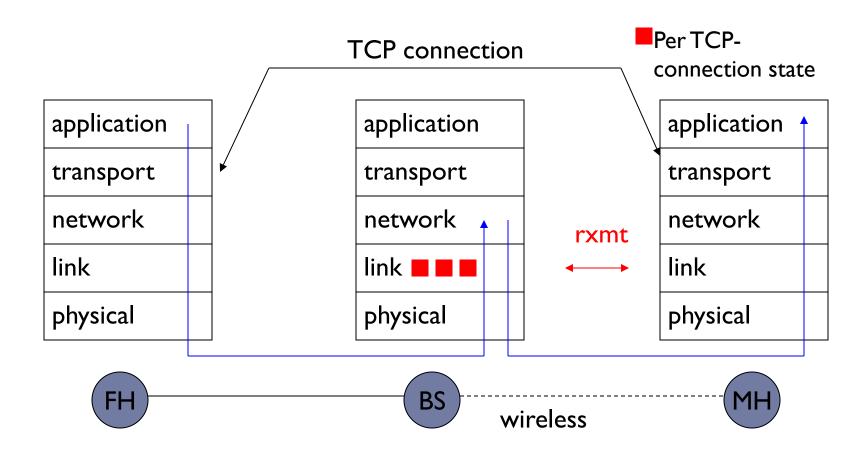
- BS retains hard state
 - BS failure can result in loss of data (unreliability)
 - If BS fails, packet 40 will be lost
 - Because it is ack'd to sender, the sender does not buffer
 40

- BS retains hard state
 - Hand-off latency increases due to state transfer
 - Data that has been ack'd to sender, must be moved to new base station



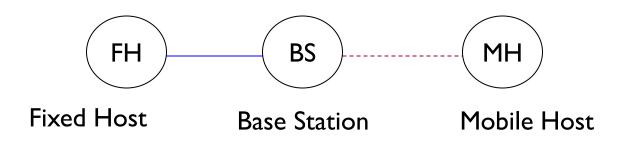
- Buffer space needed at BS for each TCP connection
 - BS buffers tend to get full with a slow wireless link slower
 - One window of data on wired connection could be stored at base station for each split connection
- Window on BS-MH connection reduced in response to errors
 - May not be an issue for wireless links with small delay-bw product

- Extra copying of data at BS
 - Copying from FH-BS socket buffer to BS-MH socket buffer
 - Increases end-to-end latency
- May not be useful if data and acks traverse different paths (both do not go through the base station)
 - Example: data on a satellite wireless hop, acks on a dial-up channel


TCP-Aware Link Layer

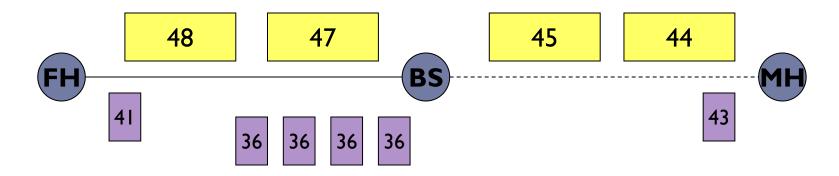
Snoop Protocol

- Retains local recovery of Split Connection approach and link level retransmission schemes
- Improves on split connection
 - End-to-end semantics retained
 - Soft state at base station, instead of hard state


Snoop Protocol

Snoop Protocol

- Buffers data packets at the base station BS
 To allow link layer retransmission
- When dupacks received by BS from MH, retransmit on wireless link, if packet present in buffer
- Prevents fast retransmit at TCP sender FH by dropping the dupacks at BS



Snoop Protocol

Þ

42	45
43	46
44	

Snoop Protocol: When Beneficial?

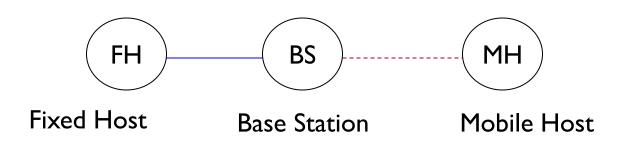
Snoop

- Prevents fast retransmit despite transmission errors on the wireless link
- If wireless link level delay-bandwidth product is less than 4 packets
 - Simple (TCP-unaware) link level retransmission scheme can suffice
 - Since delay-bandwidth product is small
 - Retransmission scheme can deliver the lost packet without resulting in 3 dupacks from the TCP receiver

Snoop Protocol: Advantages

- High throughput
 - Performance further improved using selective acks
- Local recovery from wireless losses
- Fast retransmit not triggered at sender
- End-to-end semantics retained
- Soft state at base station
 - Loss of the soft state affects performance, but not correctness

Snoop Protocol: Disadvantages

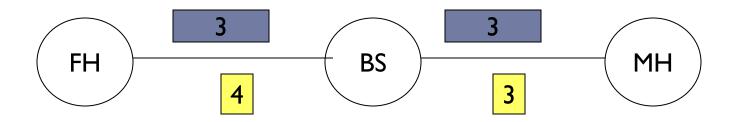

- Link layer at base station needs to be TCPaware
- Not useful if TCP headers are encrypted (IPsec)
- Cannot be used if TCP data and TCP acks traverse different paths (both do not go through the base station)

WTCP Protocol

Snoop hides wireless losses from the sender

- But sender's RTT estimates may be larger in presence of errors
- Larger RTO results in slower response for congestion losses

© CS 439 Staff, University of Illinois Fall 2024



WTCP Protocol

- Local recovery
- Timestamp option to estimate RTT
- The base station
 - Adds base station residence time to the timestamp when processing an ack received from the wireless host
- Sender's RTT estimate
 - Not affected by retransmissions on wireless link

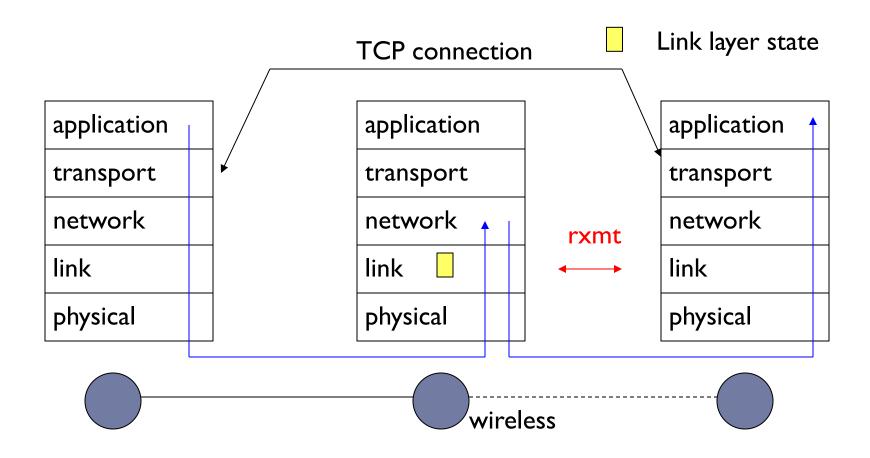
WTCP Protocol

Numbers in this figure are timestamps

Base station residence time is 1 unit

WTCP : Disadvantages

- Requires use of the timestamp option
- May be useful only if retransmission times are large
 - Link stays in bad state for a long time
 - Link frequently enters a bad state
 - Link delay large
- WTCP does not account for congestion on wireless hop
 - Assumes that all delay at base station is due to queuing and retransmissions
 - Will not work for shared wireless LAN, where delays also incurred due to contention with other transmitters

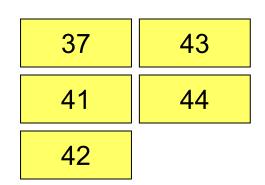

TCP-Unaware Approximation of TCP-Aware Link Layer

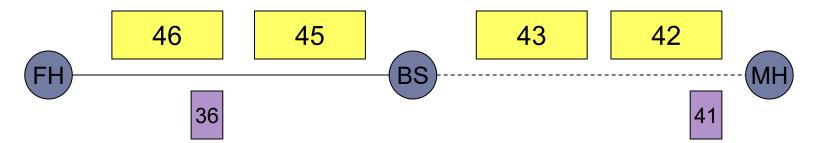
Delayed Dupacks Protocol

- Attempts to imitate Snoop, without making the base station TCP-aware
- Snoop implements two features at the base station
 - Link layer retransmission
 - Reducing interference between TCP and link layer retransmissions (by dropping dupacks)
- Delayed Dupacks implements the same two features
 - At BS : link layer retransmission
 - At MH : reducing interference between TCP and link layer retransmissions (by delaying dupacks)

Delayed Dupacks Protocol

Delayed Dupacks Protocol


- Delayed dupacks released after interval D, if missing packet not received by then
- Link layer maintains state to allow retransmission
- Link layer state is not TCP-specific



Delayed Dupacks Protocol

TCP sender does not fast retransmit

Delayed dupacks are discarded if lost packet received before delay D expires

Delayed Dupacks Scheme: Advantages

- Link layer need not be TCP-aware
- Can be used even if TCP headers are encrypted
- Works well for relatively small wireless RTT (compared to end-to-end RTT)
 - Relatively small delay D sufficient in such cases

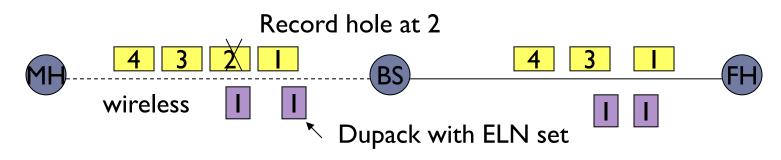
Delayed Dupacks Scheme: Disadvantages

- Right value of dupack delay D dependent on the wireless link properties
- Mechanisms to automatically choose D needed
- Delays dupacks for congestion losses too, delaying congestion loss recovery

Explicit Notification Schemes

General Philosophy

- Approximate Ideal TCP behavior
 - TCP sender should simply retransmit a packet lost due to transmission errors
 - No congestion control actions
- Wireless node
 - Determines that packets are lost due to errors
 - Informs sender using an explicit notification
- Sender on notification
 - Does not reduce congestion window
 - Retransmits lost packet


Explicit Notification Schemes

- Motivated by the Explicit Congestion Notification (ECN) proposals
- Variations proposed in literature differ in
 - Who sends explicit notification
 - How they know to send the explicit notification
 - What the sender does on receiving the notification

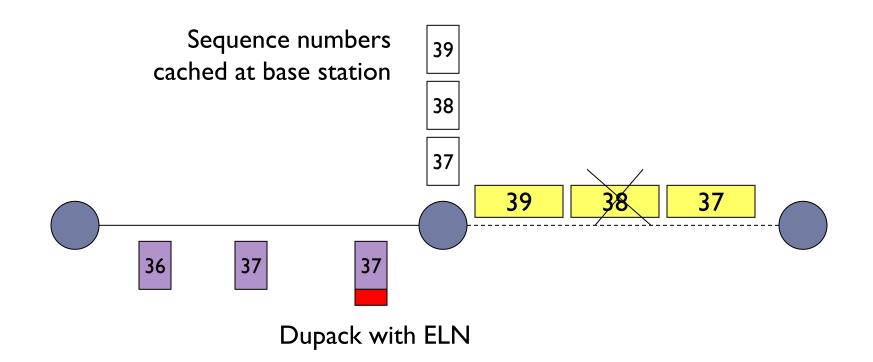
Explicit Loss Notification – MH as TCP Sender

- Wireless link first on the path from sender to receiver
- Base station
 - Keeps track of holes in the packet sequence
 - Dupack from receiver
 - Base station compares the dupack sequence number with recorded holes
 - ▶ If there is a match, an ELN bit is set in the dupack
- Sender Dupack with ELN set
 - Retransmit packet
 - Do not reduce congestion window

Explicit Loss Notification – MH as TCP Sender

Base station

- Attempts to deliver packets to the MH using a link layer retransmission scheme
- If packet cannot be delivered using a small number of retransmissions
 - BS sends a Explicit Bad State Notification (EBSN) message to TCP sender
- When TCP sender receives EBSN, it resets its timer
 - Timeout delayed, when wireless channel in bad state



Explicit Loss Notification - MH as TCP receiver

- Approximate hypothetical ELN
- Base station
 - Caches TCP sequence numbers
 - Does not cache data packets
- If sequence number for lost packet is cached at the base station
 - Duplicate acks are tagged with ELN bit before being forwarded to sender
- Sender takes appropriate action on receiving ELN

Explicit Loss Notification - MH as TCP receiver

Receiver-Based Discrimination Scheme

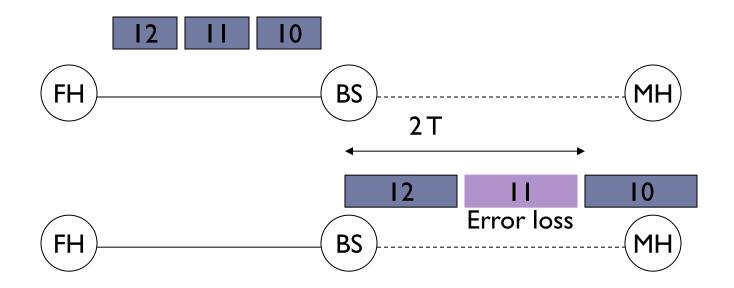
MH is TCP receiver

- Use heuristics to guess cause of packet loss
- If packet loss is "due" to errors
 - Send a notification to the TCP sender

TCP sender - on notification

- Retransmit lost packet
- Do not reduce congestion window

Receiver-Based Scheme



© CS 439 Staff, University of Illinois Fall 2024

Receiver-Based Scheme

D

Receiver-Based Scheme

 Receiver uses the inter-arrival time between consecutively received packets to guess the cause of a packet loss

- On determining a packet loss as being due to errors, the receiver may
 - Tag corresponding dupacks with an ELN bit, or
 - Send an explicit notification to sender

Receiver-Based Scheme: Disadvantages

- Limited applicability
- The slowest link on the path must be the last wireless hop
 - To ensure some queuing will occur at the base station
- The queueing delays for all packets (at the base station) should be somewhat uniform
 - Multiple connections on the link will make interpacket delays variable

Receiver-Based Scheme: Advantages

- Can be implemented without modifying the base station (an "end-to-end" scheme)
- May be used despite encryption, or if data & acks traverse different paths

Sender-Based Discrimination Scheme

- Sender can attempt to determine cause of a packet loss
- If packet loss determined to be due to errors, do not reduce congestion window
- Sender can only use statistics based on roundtrip times, window sizes, and loss pattern
 - Unless network provides more information (example: explicit loss notification)

Sender-Based Heuristics: Disadvantage

- Does not work quite well enough as yet !!
- Reason
 - Statistics collected by the sender garbled by other traffic on the network
 - Not much correlation between observed shortterm statistics, and onset of congestion

Sender-Based Heuristics: Advantages

- Only sender needs to be modified
- Needs further investigation to develop better heuristics
 - Investigate longer-term heuristics

TCP in Presence of Transmission Errors: Summary

- Many techniques have been proposed, and several approaches perform well in many environments
- Recommendation: Prefer end-to-end techniques
 - End-to-end techniques are those which do not require TCP-Specific help from lower layers
 - Lower layers may help improve TCP performance without taking TCP-specific actions.
 - Examples:
 - □ Semi-reliable link level retransmission schemes
 - □ Explicit notification

