Anonymizing Wireless Discovery

Fall 2024

© CS 439, University of Illinois Fall 2024

Wireless is Pervasive

security affairs

Using WiFi connection probe requests to track users

Researchers at the University of Hamburg demonstrated that WiFi connection probe requests expose users to track.

Pierluigi Paganini

security affairs

Using WiFi connection probe requests **POPULAR** to track users

Researchers at the University of Hamburg demonstrate that WiFi connection probe requests expose users to track.

Pierluigi Paganini

New Technology > Security

Scientists Can Now Use WiFi to See Through **People's Walls**

This won't get creepy

BY TIM NEWCOMB PUBLISHED: JAN 19, 2023 4:11 PM EST

security affairs

Using WiFi connection probe requests **POPULAR** to track users

Researchers at the University of Hamburg demonstrate that WiFi connection probe requests expose users to track.

Pierluigi Paganini

New Technology > Security

Scientists Can Now Use

uchicago news

How hackers could use Wi-Fi to track you inside your home

Computer Science

Anonymizing Discovery

- MAC Randomization
 - Change device MAC address from the factory-assigned address
 - WiFi: Discovery
 - BLE: Advertising
 - Enabled by default on most devices
 - Found in mobile OSes from Apple, Android, Windows, Samsung

Wi-Fi Discovery

MAC address is kept the same in each probe event

Wi-Fi Discovery with MAC Randomization

5a:45:3b:4f:e4:c1 0e:bc:e5:5b:dc:1d 5c:71:e9:7c:df:5d 6b:62:12:c9:f8:7b 78:d2:e4:64:7c:54 27:19:32:4a:da:e2 7a:09:44:70:0d:f1 90:35:42:af:23:9f 34:20:99:49:ad:8f ed:4a:75:7d:21:1a 04:1f:a0:92:35:ec 5c:7e:c7:26:59:4d

Ś

5a:45:3b:4f:e4:c1 0e:bc:e5:5b:dc:1d b8:27:eb:01:0a:0b 6b:62:12:c9:f8:7b 78:d2:e4:64:7c:54 b8:27:eb:01:0a:0b 7a:09:44:70:0d:f1 90:35:42:af:23:9f b8:27:eb:01:0a:0b b8:27:eb:01:0a:0b 04:1f:a0:92:35:ec 5c:7e:c7:26:59:4d

MAC Randomization

- No standard for implementation
 - Address Randomization
 - Implemented by each vendor differently
 - Address Rotation
 - Persistent randomization: use a single random MAC address
 - Non-persistent randomization: use a random MAC address each session
 - Total randomization: use a random MAC address every packet

Overhead

- Random MAC address for every packet
 - 6.6% (4ms) overhead on a Raspberry Pi
 - Could be optimized, but is probably overkill

Attacking Wi-Fi Discovery

Attacking Wi-Fi Discovery

Is MAC Randomization Enough?

Wi-Fi discovery is vulnerable even with MAC randomization

Packet Fields

MAC Address [Martin et al. PETs '17]

SSIDs [Han et al. IEEE ICC '18] [Barbera et al. IMC '13]

Sequence Numbers [Fenske et al. PETs '21] [Freudiger, WiSec '15]

Signal Properties

Computer Science

Is MAC Randomization Enough?

Wi-Fi discovery is vulnerable even with MAC randomization

Signal Properties

Packet Fields

MAC Address [Martin et al. PETs '17]

SSIDs [Han et al. IEEE ICC '18] [Barbera et al. IMC '13]

Sequence Numbers [Fenske et al. PETs '21] [Freudiger, WiSec '15]

Angle of Arrival [Xiong & Jamieson, MobiCom '13] Signal strength [Bauer et al. PETs '09] Time of Flight [Abedi & Vasisht, MobiCom '22]

Protocol Behaviors

Transmission Timing [Matte et al. WiSec '16]

Frequency of MAC Randomization [Fenske et al. PETs '21]

Is MAC Randomization Enough?

Wi-Fi discovery is vulnerable even with MAC randomization

Timing attacks on network discovery

Network Discovery: Probe Events

Network Discovery: Probe Events

Observed Probe Intervals of Mobile Devices

Device Model	OS Version Probe Interval		
Apple iPhone 14 Pro Max	17.1	20.3ms ± 0.1ms	
Apple iPhone 13	16.7.1	20.2ms	
Apple iPhone 11	17.0.3	20.2ms ±0.1ms	
Apple iPhone SE (2nd gen)	16.6.1	20.2ms± 0.1ms	
Google Pixel 7 Pro	14	20ms ± 1ms	
Google Pixel 6a	13		
Samsung S22 Ultra	13	40ms	
Samsung S21	13	40ms ± 2ms	
Samsung S10e	12	11ms	
Raspberry Pi 3B+	RPi OS 6.1	21ms	
Raspberry Pi 4B	Kali 2023.2	20ms ± 1ms	
Dell Inspiron 15R	Windows 10 22H2	11ms	
Lenovo Yoga 710	Ubuntu 20.04	51ms	

Computer Science

Make table consistent

Exploiting Probe Interval Patterns

Measure the probe intervals, grouped by MAC address

Calculate averages and medians for probe intervals

Exploiting Probe Interval Patterns

Exploiting Probe Interval Patterns

Measure the probe intervals,

All devices with the same probe interval will be grouped together

for probe intervals

Groups with similar stats are considered the same device

Transmission Timing

[Matte et al. WiSec '16]

Probe Interval Patterns

Time

[Cifuentes-Urtubey et al. MobiSys '22]

Limitation: Probe Interval Patterns

Limitation: Probe Interval Patterns

Limitation: Probe Interval Patterns

Observed Probe Intervals – Dense (≥ 30 devices)

700

In both environments, hundreds of devices use similar probe intervals, making this *ineffective* in linking MAC addresses

Time Scale is the Key

 Prior work focused solely on probe intervals

Computer Science

Time Scale is the Key

Burst Interval Prior work focused Time between scanning on the same channel solely on probe intervals Channel 1 • New approach: Analyze timing Channel 6 patterns across bursts Channel 11 Time **Computer Science**

• Prior work focused

Burst Interval Time between scanning on the same channel

Device probe events last ~100ms Devices burst on the order of 10s – 100s of seconds

Probability that probe events from different devices overlap is very low

Computer Science

Observed Burst Intervals

Device Model	OS Version	Probe Interval	Burst Interval
Apple iPhone 14 Pro Max	17.1	20.3ms ± 0.1ms	
Apple iPhone 13	16.7.1	20.2ms	
Apple iPhone 11	17.0.3	20.2ms ±0.1ms	
Apple iPhone SE (2nd gen)	16.6.1	20.2ms± 0.1ms	
Google Pixel 7 Pro	14	20ms ± 1ms	160 sec
Google Pixel 6a	13		160 sec
Samsung S22 Ultra	13	40ms	40 sec
Samsung S21	13	40ms ± 2ms	13 sec
Samsung S10e	12	11ms	40 sec
Raspberry Pi 3B+	RPi OS 6.1	21ms	60sec ± 25ms
Raspberry Pi 4B	Kali 2023.2	20ms ± 1ms	60 sec
Dell Inspiron 15R	Windows 10 22H2	11ms	59.7sec ± 20ms
Lenovo Yoga 710	Ubuntu 20.04	51ms	63.0sec ±30ms

Observed Burst Intervals

Device Model	OS Version	Probe Interval	Burst Interval
Apple iPhone 14 Pro Max	17.1	20.3ms ± 0.1ms	
Apple iPhone 13	16.7.1	20.2ms	
Apple iPhone 11	17.0.3	20.2ms ±0.1ms	
Apple iPhone SE (2nd gen)	16.6.1	20.2ms± 0.1ms	
Google Pixel 7 Pro	Knowing the target burst interval enables tracking the device		160 sec
Google Pixel 6a			160 sec
Samsung S22 Ultra			40 sec
Samsung S21			13 sec
Samsung S10e			40 sec
Raspberry Pi 3B+			60sec ± 25ms
Raspberry Pi 4B			60 sec
Dell Inspiron 15R	Windows 10 22H2	11ms	59.7sec ± 20ms
Lenovo Yoga 710	Ubuntu 20.04	51ms	63.0sec ±30ms

How do we extract the MAC addresses?

Create a template (base) pattern of where the probes will be

Create a template (base) pattern of where the probes will be

This *window size* is determined by the number of probes and their probe interval within a burst

Create a template (base) pattern of where the probes will be

This *pattern length* is time in minutes to search a pattern for

Output the MAC addresses of probes matching this pattern

Find the **best** match by **# of probes**

Solution:

To extract longer sets, *iteratively chain* through them starting from the largest set to find probes belonging to the same device

8a:46:2b:f2:db:8d b6:1a:e9:06:f1:c4 2a:a0:d5:3b:53:72 16:67:c1:04:39:bf 54:8a:53:be:1d:df 9c:99:c4:cb:84:ea a2:0a:5d:b3:35:27 8a:46:2b:f2:db:8d 6b:a1:9e:60:1f:50 16:67:c1:04:39:bf 6a:54:9f:23:41:0a 92:da:de:94:81:81

Solution:

To extract longer sets, *iteratively chain* through them starting from the largest set to find probes belonging to the same device

a2:0a:5d:b3:35:27 8a:46:2b:f2:db:8d 6b:a1:9e:60:1f:50 54:8a:53:be:1d:df 16:67:c1:04:39:bf 9c:99:c4:cb:84:ea 8a:46:2b:f2:db:8d
6b:a1:9e:60:1f:50
2a:a0:d5:3b:53:72

16:67:c1:04:39:bf 9c:99:c4:cb:84:ea 92:da:de:94:81:81

If there are intersecting MAC addresses, take the union to form a chain

Solution:

To extract longer sets, *iteratively chain* through them starting from the largest set to find probes belonging to the same device

a2:0a:5d:b3:35:27 8a:46:2b:f2:db:8d 6b:a1:9e:60:1f:50 2a:a0:d5:3b:53:72 54:8a:53:be:1d:df 16:67:c1:04:39:bf 9c:99:c4:cb:84:ea 92:da:de:94:81:81

Result: Sets containing common probes across the packet trace

Metrics for Evaluation

Accuracy

Correct matches Number of probes identified

Precision

Total number of probes from the device in the trace

Correct matches

Accuracy – Burst Interval Attack

Precision – Burst Interval Attack

Example: Finding a Phone

Packet trace from Pixel 7 Pro *160sec Burst Interval*

Top set of MAC addresses

66:83:7f:77:a2:79 2 be:be:c2:5a:a5:69 2 52:5c:71:fc:35:71 2 52:ae:d3:4f:e6:10 2 ee:07:80:10:dc:2b 2 d2:97:06:0f:b5:dc 2 0a:0e:f5:a3:7b:d5 2 d2:f3:45:d4:a6:84 2 5e:8d:68:82:02:5e 2

18/20 identified 2 missed from the end from timing drift

Example: Finding a Phone

Packet trace from 66:83:7f:77:a2:79 2 be:be:c2:5a:a5:69 2 Pixel 7 Pro **Burst Interval** 52:5c:71:fc:35:71 2 52:ae:d3:4f:e6:10 2 160sec Burst Interval Attack ee:07:80:10:dc:2b 2 d2:97:06:0f:b5:dc 2 0a:0e:f5:a3:7b:d5 2 d2:f3:45:d4:a6:84 2 5e:8d:68:82:02:5e 2 Timing attacks are effective even with MAC randomization hd from timing drift Computer Science

Top set of MAC addresses

Jittery: a set of Wi-Fi privacy defense mechanisms

- Recovers MAC randomization privacy benefits
 - Break timing patterns in network discovery
- Randomize built-in parameters of 802.11
 - MAC Randomization on all 6 bytes of the source address
 - Number of probes per burst (nprobes)
 - Random dwell time (1-100ms)
 - Shuffled channel ordering
 - Dynamic burst intervals
- No changes to infrastructure
- Potential for standardization in MAC randomization

Driver-level Implementation

- Modified *brcmfmac* driver deployed on Raspberry Pi 3B+ devices
- Burst interval modifications tested with Netlink

Dataset

Packet captures from sparse and dense environments

Traffic collected from Channels 1, 6, and 11

Random MAC addresses stored for ground truth

Probe Interval Distribution: Sparse

Probe Interval Distribution: Dense

Burst Interval Distribution

*APs were not operating in the sparse environment ^APs were not operating in the dense environment

More probes on Channel 1 results in higher false pos

Sparse Dense

*APs were not operating in the sparse environment ^APs were not operating in the dense environment

Sparse Dense

*APs were not operating in the sparse environment ^APs were not operating in the dense environment

*APs were not operating in the sparse environment ^APs were not operating in the dense environment

Computer Science

Random nprobes is not enough to be hidden

Sparse Dense

*APs were not operating in the sparse environment ^APs were not operating in the dense environment

Computer Science

Sparse Dense

*APs were not operating in the sparse environment ^APs were not operating in the dense environment

Computer Science

*APs were not operating in the sparse environment ^APs were not operating in the dense environment

Future Directions

- Identifying devices from the same vendor with higher accuracy may require additional metrics that are not timing-based
 - We constrain the attack to solely use timing metrics
 - Future approaches may expand this by using other data fields with timing
- Signal strength of the probe responses is a factor in calculating successful AP discovery rate
 - Reported results could be lower than actual due to monitor devices not receiving probe responses

Recommendations for Standardization

- Configure network discovery with
 - Random sequence numbers
 - Changing number of probes each burst
 - Variable dwell time per burst
 - Variable burst intervals
- Randomize the full length of the MAC address (48 bits)
- Change the MAC address each burst in network discovery
- Eliminate using directed probes
- Offload features from IEs to the Association phase

