Inter-Symbol Interference

- Larger difference in path length can cause inter-symbol interference (ISI)
- Suppose the receiver can do some processing
 - Add/subtracted scaled and delayed copies of the signal
Dynamic Equalization

- Combine multiple delayed copies of the signal
 - ex: linear equalizer circuit
Equalization Discussion

- Use multiple delayed copies of the received signal to try to reconstruct the original signal.
- Weights are set dynamically.
 - Typically based on some known “training” sequence.
- Effectively uses the multiple copies of the signal to reinforce each other.
 - But only works for paths that differ in length by less than the depth of the pipeline.
Diversity Techniques

- **Spatial diversity**
 - Exploit fact that fading is location-specific
 - Use multiple nearby antennas and combine signals
 - Can be directional

- **Frequency diversity**
 - Spread signal over multiple frequencies/broader frequency band
 - For example, spread spectrum

- **Channel Diversity**
 - Distribute signal over multiple “channels”
 - “Channels” experience independent fading
 - Reduces the error, i.e. only part of the signal is affected

- **Time diversity**
 - Spread data out over time
 - Expand bit stream into a richer digital signal
 - Useful for bursty errors, e.g. slow fading
 - A specific form of channel coding
Spatial Diversity

- Use multiple antennas that pick up the signal in slightly different locations
 - Can use more than two antennas!
- Each antenna experiences different channels
 - If antennas are sufficiently separated, chances are that the signals are mostly uncorrelated
 - If one antenna experiences deep fading, chances are that the other antenna has a strong signal
 - Antennas should be separated by ½ wavelength or more
- Applies to both transmit and receive side
 - Channels are symmetric
Receiver Diversity

- Simplest solution
 - Selection diversity: pick antenna with best SNR

- But why not use both signals?
 + More information
 - Signals out of phase, e.g. kind of like multi-path
 ? Don’t amplify the noise

- Maximal ratio combining: combine signals with a weight that is based on their SNR
 - Weight will favor the strongest signal (highest SNR)
Transmit Diversity

- Same as receive diversity but the transmitter has multiple antennas
- Selection diversity: transmitter picks the best antenna
 - i.e. with best channel to receiver
 - Sender “precodes” the signal
- How does transmitter learn channel?
 - Gets explicit feedback from the receiver
 - Rely on channel reciprocity
Typical Algorithm in 802.11

- Use transmit + receive selection diversity
- How to explore all channels to find the best one
 ... or at least the best transmit antenna
- Receiver
 - Use the antenna with the strongest signal
 - Always use the same antenna to send the acknowledgement – gives feedback to the sender
Typical Algorithm in 802.11

- Use transmit + receive selection diversity
- How to explore all channels to find the best one … or at least the best transmit antenna

Sender
- Pick an antenna to transmit and learn about the channel quality based on the ACK
- Occasionally try the other antenna to explore the channel between all four channel pairs
Spread Spectrum

- Spread transmission over a wider bandwidth
 - Don’t put all your eggs in one basket!
 - Good for military
 - Jamming and interception becomes harder
 - Also useful to minimize impact of a “bad” frequency in regular environments

- What can be gained from this apparent waste of spectrum?
 - Immunity from various kinds of noise and multipath distortion
 - Can be used for hiding and encrypting signals
 - Several users can independently use the same higher bandwidth with very little interference
Frequency Hopping Spread Spectrum (FHSS)

- Have the transmitter hop between a seemingly random sequence of frequencies
 - Each frequency has the bandwidth of the original signal
- Dwell time is the time spent using one frequency
- Spreading code determines the hopping sequence
 - Must be shared by sender and receiver (e.g. standardized)
Example: Original 802.11 Standard (FH)

- 96 channels of 1 MHz
 - Only 78 used in US
 - Other countries used different numbers
 - Each channel carried only ~1% of the bandwidth
 - 1 or 2 Mbps per channel
- Dwell time was configurable
 - FCC set an upper bound of 400 msec
 - Transmitter/receiver must be synchronized
- Standard defined 26 orthogonal hop sequences
 - Transmitter used a beacon on fixed frequency to inform the receiver of its hop sequence
- Can support multiple simultaneous transmissions – use different hop sequences
 - e.g. up to 10 co-located APs with their clients
Example: Bluetooth

- 79 frequencies with a spacing of 1 MHz
 - Other countries use different numbers of frequencies
- Frequency hopping rate is 1600 hops/s
- Maximum data rate is 1 MHz
Direct Sequence Spread Spectrum (DSSS)

- Each bit in original signal is represented by multiple bits (chips) in the transmitted signal
- Spreading code spreads signal across a wider frequency band
 - Spread is in direct proportion to number of bits used
 - e.g. exclusive-OR of the bits with the spreading code
- The resulting bit stream is used to modulate the signal
Direct Sequence Spread Spectrum (DSSS)

Transmitter

Data input A

Locally generated PN bit stream

Transmitted signal $C = A \oplus B$

Receiver

Received signal C

Locally generated PN bit stream identical to B above

Data output $A = C \oplus B$
Properties

- Each bit is sent as multiple chips
 - Need more bps bandwidth to send signal
 - Number of chips per bit = spreading ratio
 - This is the spreading part of spread spectrum

- Need more spectral bandwidth
 - Nyquist and Shannon say so!

Advantages

- Transmission is more resilient.
 - DSSS signal will look like noise in a narrow band
 - Can lose some chips in a word and recover easily

- Multiple users can share bandwidth
Example: Original 802.11 Standard (DSSS)

- **DSSS PHY**
 - 1 Msymbol/s rate
 - 11-to-1 spreading ratio
 - Barker chipping sequence
 - Barker sequence has low autocorrelation properties
 - The similarity between observations as a function of the time lag between them
 - Uses about 22 MHz

- **Receiver decodes by counting the number of “1” bits in each word**
 - 6 “1” bits correspond to a 0 data bit

- **Data rate**
 - 1 Mbps (i.e. 11 Mchips/sec)
 - Extended to 2 Mbps
 - Requires the detection of a ¼ phase shift
Example: 802.11b

- (Maximum) data rate
 - 11 Mbs

- Complementary Code Keying (CCK)
 - Complementary means that the code has good auto-correlation properties
 - Want nice properties to ease recovery in the presence of noise, multipath interference, ...
 - Each word is mapped onto an 8 bit chip sequence
 - Symbol rate at 1.375 MSymbols/sec, at 8 bpS = 11 Mbps

- Symbol rate
 - 1.375 MSymbols/sec, at 8 bpS = 11 Mbps
Code Division Multiple Access

- Users share spectrum and time, but use different codes to spread their data over frequencies
 - DSSS where users use different spreading sequences
 - Use spreading sequences that are orthogonal, i.e. they have minimal overlap
 - Frequency hopping with different hop sequences
- The idea is that users will only rarely overlap and the inherent robustness of DSSS will allow users to recover if there is a conflict
 - Overlap = use the same the frequency at the same time
 - The signal of other users will appear as noise
CDMA Principle

- Basic Principles of CDMA
 - D = rate of data signal
 - Break each bit into k chips - user-specific fixed pattern
 - Chip data rate of new channel = kD
- If k=6 and code is a sequence of 1s and -1s
 - For a ‘1’ bit, A sends code as chip pattern
 - \(<c_1, c_2, c_3, c_4, c_5, c_6>\)
 - For a ‘0’ bit, A sends complement of code
 - \(<-c_1, -c_2, -c_3, -c_4, -c_5, -c_6>\)
- Receiver knows sender’s code and performs electronic decode function
 \[S_u(d) = d_1 \times c_1 + d_2 \times c_2 + d_3 \times c_3 + d_4 \times c_4 + d_5 \times c_5 + d_6 \times c_6 \]
 - \(<d_1, d_2, d_3, d_4, d_5, d_6>\) = received chip pattern
 - \(<c_1, c_2, c_3, c_4, c_5, c_6>\) = sender’s code
CDMA Example

- **User A code** = \(<1, -1, -1, 1, -1, 1>\)
 - To send a 1 bit = \(<1, -1, -1, 1, -1, 1>\)
 - To send a 0 bit = \(<-1, 1, 1, -1, 1, -1>\)
- **User B code** = \(<1, 1, -1, -1, 1, 1>\)
 - To send a 1 bit = \(<1, 1, -1, -1, 1, 1>\)
- **Receiver receiving with A’s code**
 - \((A’s \ code) \times \ (received \ chip \ pattern)\)
 - User A ‘1’ bit: 6 -> 1
 - User A ‘0’ bit: -6 -> 0
 - User B ‘1’ bit: 0 -> unwanted signal ignored
Categories of Spreading Sequences

- Spreading Sequence Categories
 - Pseudo-noise (PN) sequences
 - Orthogonal codes
- For FHSS systems
 - PN sequences most common
- For DSSS systems not employing CDMA
 - PN sequences most common
- For DSSS CDMA systems
 - PN sequences
 - Orthogonal codes
CDMA Discussion

- CDMA does not assign a fixed bandwidth but a user’s bandwidth depends on the load
 - More users = more “noise” and less throughput for each user, e.g. more information lost due to errors
 - How graceful the degradation is depends on how orthogonal the codes are
- TDMA and FDMA have a fixed channel capacity
- Contention based access is more flexible than TDMA

- Weaker signals may be lost in the clutter
 - This will systematically put the same node pairs at a disadvantage – not acceptable
 - The solution is to add power control, i.e. nearby nodes use a lower transmission power than remote nodes
CDMA Example

- **CDMA cellular standard**
 - Used in the US, e.g. Sprint
- **Allocates 1.228 MHz for base station to mobile communication**
 - Shared by 64 “code channels”
 - Used for voice (55), paging service (8), and control (1)
- **Provides a lot error coding to recover from errors**
 - Voice data is 8550 bps
 - Coding and FEC increase this to 19.2 kbps
 - Then spread out over 1.228 MHz using DSSS; uses QPSK
Discussion

- Spread spectrum is very widely used
- Effective against noise and multipath
 - Signal looks like noise to other nodes
 - Multiple transmitters can use the same frequency range
- FCC requires the use of spread spectrum in ISM band
 - If signal is above a certain power level
- Is also used in higher speed 802.11 versions.
 - No surprise!
Time Redundancy: Bit Stream Level

- Protect digital data by introducing redundancy in the transmitted data
 - Error detection codes: can identify certain types of errors
 - Error correction codes: can fix certain types of errors

- Block codes provide Forward Error Correction (FEC) for blocks of data
 - \((n, k)\) code: \(n\) bits are transmitted for \(k\) information bits
 - Simplest example: parity codes
 - Many different codes exist: Hamming, cyclic, Reed-Solomon, …

- Convolutional codes provide protection for a continuous stream of bits
 - Coding gain is \(n/k\)
 - Turbo codes: convolutional code with channel estimation
Time Diversity Example

- Spread blocks of bytes out over time
- Can use FEC or other error recovery techniques to deal with burst errors
Error Detection/Recovery

- Adds redundant information that checks for errors
 - And potentially fix them
 - If not, discard packet and resend

- Occurs at many levels
 - Demodulation of signals into symbols (analog)
 - Bit error detection/correction (digital)—our main focus
 - Within network adapter (CRC check)
Error Detection/Recovery

- Analog Errors
 - Example of signal distortion
- Hamming distance
 - Parity and voting
 - Hamming codes
- Error bits or error bursts?
- Digital error detection
 - Two-dimensional parity
 - Cyclic Redundancy Check (CRC)
Analog Errors

- Consider the following encoding of ‘Q’
Encoding isn’t perfect
Encoding isn’t perfect
Symbols

possible binary voltage encoding
symbol neighborhoods and erasure region
Symbols

- **QAM**
 - Phase and amplitude modulation
- **2-dimensional representation**
 - Angle is phase shift
 - Radial distance is new amplitude

16-symbol example
Symbols

16-symbol example

possible QAM symbol
neighborhoods in green; all
other space results in erasure
Digital error detection and correction

- **Input:** decoded symbols
 - Some correct
 - Some incorrect
 - Some erased

- **Output:**
 - Correct blocks (or codewords, or frames, or packets)
 - Erased blocks
Error Detection Probabilities

Definitions

- P_b: Probability of single bit error (BER)
- P_1: Probability that a frame arrives with no bit errors
- P_2: While using error detection, the probability that a frame arrives with one or more undetected errors
- P_3: While using error detection, the probability that a frame arrives with one or more detected bit errors but no undetected bit errors
Error Detection Probabilities

- With no error detection

\[P_1 = (1 - P_b)^F \]
\[P_2 = 1 - P_1 \]
\[P_3 = 0 \]

- \(F = \) Number of bits per frame
Error Detection Process

- **Transmitter**
 - For a given frame, an error-detecting code (check bits) is calculated from data bits
 - Check bits are appended to data bits

- **Receiver**
 - Separates incoming frame into data bits and check bits
 - Calculates check bits from received data bits
 - Compares calculated check bits against received check bits
 - Detected error occurs if mismatch
Parity

- Parity bit appended to a block of data
- Even parity
 - Added bit ensures an even number of 1s
- Odd parity
 - Added bit ensures an odd number of 1s
- Example
 - 7-bit character: 1110001
 - Even parity: 1110001 0
 - Odd parity: 1110001 1
Parity: Detecting Bit Flips

- 1-bit error detection with parity
 - Add an extra bit to a code to ensure an even (odd) number of 1s
 - Every code word has an even (odd) number of 1s

<table>
<thead>
<tr>
<th>Valid code words</th>
<th>Parity Encoding:</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>011</td>
</tr>
<tr>
<td>00</td>
<td>010</td>
</tr>
<tr>
<td>10</td>
<td>011</td>
</tr>
</tbody>
</table>

White – invalid (error)
Voting: Correcting Bit Flips

- 1-bit error correction with voting
 - Every codeword is transmitted n times
 - Codeword is 3 bits long

Valid code words

Voting:
- White - correct to 1
- Blue - correct to 0
Voting: 2-bit Erasure Correction

- Every code word is copied 3 times

2-erasure planes in green
remaining bit not ambiguous

cannot correct 1-error and 1-erasure
The Hamming distance between two code words is the minimum number of bit flips to move from one to the other.

Example:

- 00101 and 00010
- Hamming distance of 3
Minimum Hamming Distance

- The minimum Hamming distance of a code is the minimum distance over all pairs of codewords
 - Minimum Hamming Distance for parity
 - 2
 - Minimum Hamming Distance for voting
 - 3
Coverage

- **N-bit error detection**
 - No code word changed into another code word
 - Requires Hamming distance of $N+1$

- **N-bit error correction**
 - N-bit neighborhood: all codewords within N bit flips
 - No overlap between N-bit neighborhoods
 - Requires hamming distance of $2N+1$
Hamming Codes

- Linear error-correcting code
- Named after Richard Hamming
- Simple, commonly used in RAM (e.g., ECC-RAM)
- Can detect up to 2-bit errors
- Can correct up to 1-bit errors
Hamming Codes

- **Construction**
 - number bits from 1 upward
 - powers of 2 are check bits
 - all others are data bits
 - Check bit j: XOR of all k for which (j AND k) = j

- **Example:**
 - 4 bits of data, 3 check bits

```
  1  2  3  4  5  6  7
C_1 C_2 D_3 C_4 D_5 D_6 D_7
```
Hamming Codes

- **Construction**
 - number bits from 1 upward
 - powers of 2 are check bits
 - all others are data bits
 - Check bit j: XOR of all k for which $(j \text{ AND } k) = j$

Example:
- 4 bits of data, 3 check bits

1 2 3 4 5 6 7

C₁ C₂ D₃ C₄ D₅ D₆ D₇
Hamming Codes

- **Construction**
 - number bits from 1 upward
 - powers of 2 are check bits
 - all others are data bits
 - Check bit j: XOR of all k for which $(j \text{ AND } k) = j$

 - **Example:**
 - 4 bits of data, 3 check bits

```
 1 2 3 4 5 6 7
C_1 C_2 D_3 C_4 D_5 D_6 D_7
```
Hamming Codes
What are we trying to handle?

- **Worst case errors**
 - We solved this for 1 bit error
 - Can generalize, but will get expensive for more bit errors

- **Probability of error per bit**
 - Flip each bit with some probability, independently of others

- **Burst model**
 - Probability of back-to-back bit errors
 - Error probability dependent on adjacent bits
 - Value of errors may have structure

- **Why assume bursts?**
 - Appropriate for some media (e.g., radio)
 - Faster signaling rate enhances such phenomena
Digital Error Detection Techniques

- **Two-dimensional parity**
 - Detects up to 3-bit errors
 - Good for burst errors

- **IP checksum**
 - Simple addition
 - Simple in software
 - Used as backup to CRC

- **Cyclic Redundancy Check (CRC)**
 - Powerful mathematics
 - Tricky in software, simple in hardware
 - Used in network adapter
Two-Dimensional Parity

- **Use 1-dimensional parity**
 - Add one bit to a 7-bit code to ensure an even/odd number of 1s

- **Add 2nd dimension**
 - Add an extra byte to frame
 - Bits are set to ensure even/odd number of 1s in that position across all bytes in frame

- **Comments**
 - Catches all 1-, 2- and 3-bit and most 4-bit errors
Two-Dimensional Parity

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© CS/ECE 439 Staff, University of Illinois Fall 2022
What happens if...

Can detect exactly which bit flipped
Can also correct it!

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>1</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

© CS/ECE 439 Staff, University of Illinois Fall 2022
What about 2-bit errors?

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Can detect the two-bit error

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Can’t detect a problem here

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Can’t tell which bits are flipped, so can’t correct

© CS/ECE 439 Staff, University of Illinois Fall 2022
What about 2-bit errors?

Could be the dotted pair or the dashed pair. Can’t correct 2-bit error.

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

If these four parity bits don’t match
Which bits could be in error?

0 0 1 0 0 0 1 1 1 1 1 1

© CS/ECE 439 Staff, University of Illinois Fall 2022
What about 3-bit errors?

Can detect the three-bit error

But you can’t correct (eg if dashed bits got flipped instead of the dotted ones)
What about 4-bit errors?

Are there any 4-bit errors this scheme *can* detect?

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

© CS/ECE 439 Staff, University of Illinois Fall 2022
What about 4-bit errors?

Can you think of a 4-bit error this scheme can’t detect?
Internet Checksum

- Idea
 - Add up all the words
 - Transmit the sum
 - Use 1’s complement addition on 16bit codewords

- Example
 - Codewords: -5 -3
 - 1’s complement binary: 1010 1100
 - 1’s complement sum 1000

- Comments
 - Small number of redundant bits
 - Easy to implement
 - Not very robust
 - Eliminated in IPv6
IP Checksum

```c
u_short cksum(u_short *buf, int count) {
    register u_long sum = 0;
    while (count--) {
        sum += *buf++;
        if (sum & 0xFFFF0000) {
            /* carry occurred, so wrap around */
            sum &= 0xFFFF;
            sum++;
        }
    }
    return ~(sum & 0xFFFF);
}
```

What could cause this check to fail?
Simplified CRC-like protocol using regular integers

- **Basic idea**
 - **Both endpoints** agree in advance on divisor value \(C = 3 \)
 - **Sender** wants to send message \(M = 10 \)
 - **Sender** computes \(X \) such that \(C \) divides \(10M + X \)
 - **Sender** sends codeword \(W = 10M + X \)
 - **Receiver** receives \(W' \) and checks whether \(C \) divides \(W' \)
 - If so, then probably no error
 - If not, then error
Simplified CRC-like protocol using regular integers

- Intuition
 - If C is large, it’s unlikely that bits are flipped exactly to land on another multiple of C
 - CRC is vaguely like this, but uses polynomials instead of numbers
Cyclic Redundancy Check (CRC)

- **Given**
 - Message $M = 10011010$
 - Represented as Polynomial $M(x)$

 \[M(x) = 1 \cdot x^7 + 0 \cdot x^6 + 0 \cdot x^5 + 1 \cdot x^4 + 1 \cdot x^3 + 0 \cdot x^2 + 1 \cdot x + 0 \]

 \[= x^7 + x^4 + x^3 + x \]

- Select a divisor polynomial $C(x)$ with degree k
 - Example with $k = 3$:

 \[C(x) = x^3 + x^2 + 1 \]

 Represented as 1101

- Transmit a polynomial $P(x)$ that is evenly divisible by $C(x)$

 \[P(x) = M(x) \cdot x^k + k \text{ check bits} \]

 How can we determine these k bits?
Properties of Polynomial Arithmetic

- Coefficients are modulo 2
 \[(x^3 + x) + (x^2 + x + 1) = \ldots\]
 \[\ldots x^3 + x^2 + 1\]
 \[(x^3 + x) - (x^2 + x + 1) = \ldots\]
 \[\ldots x^3 + x^2 + 1\] also!

- Addition and subtraction are both xor!

- Need to compute \(R \) such that \(C(x) \) divides \(P(x) = M(x) \cdot x^k + R(x) \)

- So \(R(x) = \) remainder of \(M(x) \cdot x^k / C(x) \)
 - Will find this with polynomial long division
CRC - Sender

- **Given**
 - \(M(x) = 10011010 = x^7 + x^4 + x^3 + x \)
 - \(C(x) = 1101 = x^3 + x^2 + 1 \)

- **Steps**
 - \(T(x) = M(x) \ast x^k \) (add zeros to increase deg. of \(M(x) \) by \(k \))
 - Find remainder, \(R(x) \), from \(T(x)/C(x) \)
 - \(P(x) = T(x) - R(x) \Rightarrow M(x) \) followed by \(R(x) \)

- **Example**
 - \(T(x) = 10011010000 \)
 - \(R(x) = 101 \)
 - \(P(x) = 10011010101 \)
CRC - Receiver

- Receive Polynomial $P(x) + E(x)$
 - $E(x)$ represents errors
 - $E(x) = 0$, implies no errors
- Divide $(P(x) + E(x))$ by $C(x)$
 - If result = 0, either
 - No errors ($E(x) = 0$, and $P(x)$ is evenly divisible by $C(x)$)
 - $(P(x) + E(x))$ is exactly divisible by $C(x)$, error will not be detected
 - If result = 1, errors.
CRC – Example Encoding

\[C(x) = x^3 + x^2 + 1 = 1101 \] \hspace{1cm} \text{Generator}

\[M(x) = x^7 + x^4 + x^3 + x = 10011010 \] \hspace{1cm} \text{Message}

\[1101 \]
\[10011010000 \]
\[1101 \]
\[1001 \]
\[1101 \]
\[1000 \]
\[1101 \]
\[1011 \]
\[1101 \]
\[1100 \]
\[1101 \]
\[1000 \]
\[1101 \]
\[101 \]

Result:

Transmit message followed by remainder:

\[1001101010101 \]
CRC – Example Decoding – No Errors

\[C(x) = x^3 + x^2 + 1 \]
\[P(x) = x^{10} + x^7 + x^6 + x^4 + x^2 + 1 \]

Generator: \[1101 \]

Received Message: \[10011010101 \]

\[m \mod c \]

Remainder: \[0 \]

Result:

CRC test is passed
CRC – Example Decoding – with Errors

\[C(x) = x^3 + x^2 + 1 = 1101 \quad \text{Generator} \]
\[P(x) = x^{10} + x^7 + x^5 + x^4 + x^2 + 1 = 10010110101 \quad \text{Received Message} \]

- 1101 is the \(k+1 \) bit check sequence \(c \), equivalent to a degree-\(k \) polynomial.
- \(10010110101 \) is the received message.
- Two bit errors occur.
- The remainder is \(0101 \).

Result:
CRC test failed
CRC Error Detection

- **Properties**
 - Characterize error as $E(x)$
 - Error detected unless $C(x)$ divides $E(x)$
 - (i.e., $E(x)$ is a multiple of $C(x)$)
Example of Polynomial Multiplication

- Multiply
 - 1101 by 10110
 - $x^3 + x^2 + 1$ by $x^4 + x^2 + x$

This is a multiple of c, so that if errors occur according to this sequence, the CRC test would be passed.
CRC Error Detection

- **What errors can we detect?**
 - All single-bit errors, if x^k and x^0 have non-zero coefficients
 - All double-bit errors, if $C(x)$ has at least three terms
 - All odd bit errors, if $C(x)$ contains the factor $(x + 1)$
 - Any bursts of length $< k$, if $C(x)$ includes a constant term
 - Most bursts of length $\geq k$
Common Polynomials for $C(x)$

<table>
<thead>
<tr>
<th>CRC</th>
<th>$C(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC-8</td>
<td>$x^8 + x^2 + x^1 + 1$</td>
</tr>
<tr>
<td>CRC-10</td>
<td>$x^{10} + x^9 + x^5 + x^4 + x^1 + 1$</td>
</tr>
<tr>
<td>CRC-12</td>
<td>$x^{12} + x^{11} + x^3 + x^2 + x^1 + 1$</td>
</tr>
<tr>
<td>CRC-16</td>
<td>$x^{16} + x^{15} + x^2 + 1$</td>
</tr>
<tr>
<td>CRC-CCITT</td>
<td>$x^{16} + x^{12} + x^5 + 1$</td>
</tr>
<tr>
<td>CRC-32</td>
<td>$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + 1$</td>
</tr>
</tbody>
</table>
Error Detection vs. Error Correction

- **Detection**
 - Pro: Overhead only on messages with errors
 - Con: Cost in bandwidth and latency for retransmissions

- **Correction**
 - Pro: Quick recovery
 - Con: Overhead on all messages

- What should we use?
 - Correction if retransmission is too expensive
 - Correction if probability of errors is high
 - Detection when retransmission is easy and probability of errors is low