TCP 3: Oct 13

- Fast Recovery
- TCP state diagram
- Saw tooth, rough tput
- Single timer
- RTO estimation
- Packets to Bytes
- TCP Flow control
- TCP fairness
- TCP over wireless

TCP State Diagram

- SST = 10
- CW = 4
- Fast Recovery mode ON
 - SST = 2
 - CW = SST + 3 = 5
- DUPACK++
 - CW = CW + 1 = 6
- Timeout for P5
 - CW = 1
 - SST = 3
- CW = 10

Action:
- Event: alarm rings
 - Wake up
- State: check email
 - Class cancelled
 - Go back to sleep

TCP Flow Control

- CW = 1
- SST = 3
- CW = 10
TCP Protocol: State Diagram

Socket connection, TCP handshake:
- CW = 1
- SST = 64
- dupACK = 0

Slow Start:
- new Ack
 - CW = CW+1
 - Send pkts based on CW
 - dupACK = 0

DupACK:
- dupACK++
- CW ≥ SST

Fast Recovery:
- new Ack
 - CW = CW + \(\frac{1}{L_{cw}} \)
 - CW = 1
 - dupACK = 0

DupACK avoidance:
- CW = SST + 3
- Retx "hole" packet
- CW = CW + 1
- Retx new pkt as allowed by CW.

Timeout:
- SST = CW/2
- CW = 1
- dupACK = 0
- Retx the pkt that timed out

DupACK = 3:
- SST = CW/2
- CW = 1
- dupACK = 0
- Retx timed out pkt

Retx packet timed out:
- SST = CW/2
- CW = 1
- dupACK = 0
- Retx timeout pkt

Retx new pkt as allowed by CW.
- CW = SST + 3
- Retx "hole" packet
- CW = CW + 1
- Retx new packet as allowed.
TCP CW exhibits a "saw tooth" behavior

\[\text{Avg TCP throughput} = \frac{N}{\text{RTT}} + \frac{N/2}{\text{RTT}} \]

\[= 0.75 \frac{N}{\text{RTT}} \]
TCP uses a single timer for timeouts:

Doesn’t set up 64 timeouts.

Instead, notes down timestamp of each packet and sets timer for only first packet in CW.

\[
\begin{align*}
T/0 & = 255 \\
9:00 & \rightarrow P_1 \\
T/0 & \rightarrow 10s \rightarrow P_2 \\
& \rightarrow 20s \rightarrow P_3 \leftarrow \text{A1}
\end{align*}
\]

At this time:
- Cancel old timer for pkt \(P_1 \)
- Start new timer for \(\Delta t \) where

\[
\Delta t = (P_2 \text{'s time} + \text{timeout} - \text{current time})
\]
How much should timeout duration be? RTO (Retransmit timeout).

\[\text{RTO} = f(\text{historical RTT}) \]

1. RTO = current RTT -> Really bad idea
2. RTO = max \{ last K RTT \} -> very conservative about RTO
 - means TCP reacts slowly to real congestion
3. RTO = mean \{ last K RTT \} -> half of pkts would timeout -> bad idea
RTO = Weighted avg. of historical RTTs + Safety factor

\[\text{Estimated RTT} \left(\hat{R} \right) \downarrow \]

\[\text{Deviation of RTT} \left(\hat{\Delta} \right) \]