CS433: Computer System Organization – Spring 2025
Homework 2
Total Points: 41 points
All students should solve all problems
Due Date: February 18, 2025 at 10:00 pm CT
(see course information slides for more details)
[bookmark: _p1yiroz0822k]Directions:
· All students must write and sign the following statement at the end of their homework submission. "I have read the honor code for this class in the course information handout and have done this homework in conformance with that code. I understand fully the penalty for violating the honor code policies for this class." No credit will be given for a submission that does not contain this signed statement.
· On top of the first page of your homework solution, please write your name and NETID, your partner’s name and NETID, and whether you are an undergrad or grad student. 
· Please show all work that you used to arrive at your answer. Answers without justification will not receive credit.
· [bookmark: _gjdgxs]See course information slides for more details
[bookmark: _sxrqw2kypezc]
[bookmark: _234yby144nb7]Problem 1 [5 points]
Consider two different machines. The first has a single cycle datapath (i.e., a single stage, non-pipelined machine) with a cycle time of 20 ns. The second is a pipelined machine with 5 pipeline stages and a cycle time of 4ns.

[bookmark: _vyn3jyrgoo06]Part (A) [1 point]
What is the speedup of the pipelined machine versus the single cycle machine assuming there are no stalls?

[bookmark: _rteqdgl6y7uz]Part (B) [2 points]
What is the speedup of the pipelined machine versus the single cycle machine if the 5-stage pipeline stalls 1 cycle for 20% of the instructions?

[bookmark: _6tgywuycgn1k]Part (C) [2 points]
Now consider a 4-stage pipeline machine with a cycle time of 5 ns. Assuming no stalls, is this implementation faster or slower than the original 5-stage pipeline? Explain your answer.


[bookmark: _opdwgths0nes]Problem 2 [4 points]
Consider two different 5-stage pipeline machines (IF ID EX MEM WB). The first machine resolves branches in the ID stage, uses one branch delay slot, and is able to fill 75% of its delay slots with useful instructions. The second machine resolves branches in the EX stage (i.e., it determines whether the branch is taken and the target address of a taken branch in the EX stage) and uses a predict-not-taken scheme. Assume that the cycle times of the machines are identical. Given that 25% of the instructions are branches, 15% of branches are taken, and that stalls are due to branches alone, which machine is faster? To get any credit, you must justify your answer.

[bookmark: _h1pd3fr3oet3]Problem 3 [10 points]
Consider the following program:

	loop:
addi r2, r2, #1
ld r4, 0(r3)
ld r5, 4(r3)
add r6, r4, r5
mul r4, r6, r7
subi r3, r3, #8
bnez r2, loop
add r11, r12, r13
	
; I1: r2 = r2 + 1
; I2: load r4 from address 0+r3
; I3: load r5 from address 4+r3
; I4: r6 = r4 + r5
; I5: r4 = r6 * r7
; I6: r3 = r3 - 8
; I7: branch to loop if r2 != 0
; I8: r11 = r12 + r13



[bookmark: _m5g1dd3xsoho]Part (A) [4 points]
Identify all data dependencies (potential data hazards) in the given code snippet. Assume the loop takes exactly one iteration to complete (i.e., instructions in the loop body are executed only once and branch at I7 is not taken). Specify if the data dependence is RAW, WAW or WAR.

[bookmark: _jz9pbiv5gv1e]Part (B) [2 points]
Assume a 5-stage pipeline (IF ID EX MEM WB) without any forwarding or bypassing hardware, but with support for a register read and write in the same cycle. Also assume no branch prediction, i.e., branches are resolved in the ID stage and handled by stalling the pipeline. All stages take 1 cycle. Again, the loop takes one iteration to complete. Which dependencies from part (A) cause stalls? How many cycles does the above code snippet take to execute?

[bookmark: _qsxyp0rpo6e0]Part (C) [2 points]
Assume that the pipeline now supports full forwarding and bypassing. Furthermore, branches are handled as predicted-not-taken. As before, the loop takes one iteration to complete. Which dependencies from part (A) still cause stalls and why? How many cycles does the above code snippet take to execute now?

[bookmark: _dghvp9xviuk1]Part (D) [2 points]
If the pipeline from part (C) instead uses a branch delay slot, how would you schedule the instructions in the loop to minimize stalls? For this part, assume the loop takes multiple iterations to complete. As discussed in the lecture, ensure that the new schedule is functionally equivalent and does not violate any dependencies of the original program. Explain your answer.

[bookmark: _ftb4i3ajoosn]Problem 4 [8 points]
High-performance processors often have deep pipelines. Imagine that you have a processor where the EX and MEM stages of the 5-stage pipeline discussed in class have been split in two with stages labeled EX1, EX2, MEM1, MEM2, leading to a 7-stage pipeline. Assume this change applies to all instructions.

Data is forwarded from a producer stage to a consumer stage where it is needed, on the next cycle. If the producer is either EX or MEM, the data may be forwarded only from the second stage of the pair to the consumer. If the consumer is either EX or MEM, the data may be forwarded from the producer to the first stage of the pair only. For example, the output of the second EX stage is forwarded as the input of the ID stage, on the next cycle. Similarly, the output of the second MEM stage is forwarded as the input of the first EX stage, on the next cycle.
[bookmark: _p39vn1rk58z8]Part (A) [6 points]
Consider the following program is executed on the 7-stage pipeline processor:

	loop:
ld	x1, 0(x2)
addi	x1, x1, #1
sd	x1, 0(x2)
addi x2, x2, #4
sub	x4, x3, x2
bnez x4, loop
	
; I1: load x1 from address 0+x2
; I2: x1 = x1 + 1
; I3: store x1 at address 0+x2
; I4: x2 = x2 + 4
; I5: x4 = x3 - x2
; I6: branch to loop if x4 != 0



Show the timing of the above program for the first 20 cycles – limit your work to the instruction sequence in the first column of the below table (i.e., only 8 instructions). As shown in the table, the loop executes for more than one iteration (i.e., the branch is taken). Assume that branches are (magically) predicted as taken and that there is magic hardware that ensures that branches that are actually taken do not incur any stalls. Branches are resolved (i.e., use their operands) in the ID stage. Assume full forwarding and bypassing hardware as described above. 

For all stalls identified in the instruction sequence, please justify the reason for the stall (these can be listed below the table).

Note: You are required to show timing for the 8 instructions listed in the table below and for 20 cycles only. If any instruction(s) have stages remaining at the 20th cycle, you may stop at the 20th cycle in the table. Similarly, if all 8 instructions write-back before 20 cycles, you may stop at the WB of the last instruction.

	
	1
	2
	3
	4
	5
	6
	7
	…
	

	I1
	IF
	ID
	EX1
	EX2
	M1
	M2
	WB
	
	

	I2
	
	
	
	
	
	
	
	
	

	I3
	
	
	
	
	
	
	
	
	

	I4
	
	
	
	
	
	
	
	
	

	I5
	
	
	
	
	
	
	
	
	

	I6
	
	
	
	
	
	
	
	
	

	I1
	
	
	
	
	
	
	
	
	

	I2
	
	
	
	
	
	
	
	
	



[bookmark: _nnatfc1v414l]Part (B) [2 points]
Assume that in the 5-stage pipeline, all stages require 0.8 ns each, and the pipeline register delay is 0.1 ns. What is the clock cycle time of the 5-stage pipeline? If the 7-stage pipeline splits the EX and MEM stages in half, what is the cycle time of the 7-stage machine? Assume the pipeline register delay does not change.

[bookmark: _jhrnwicnygqy]Problem 5 [14 points]
For this problem, we will explore a pipeline for a register-memory architecture. The architecture has two instruction formats: a register-register format and a register-memory format. In the register-memory format, one of the operands for an ALU instruction could come from memory.
There is a single memory-addressing mode (offset + base register). The only non-branch register-memory instructions available have the format:

Op Rdest, Rsrc1, Rsrc2
or
Op Rdest, Rsrc1, MEM

where Op is one of the following: Add, Subtract, And, Or, Load (in which case Rsrc1 is ignored), or Store. Rsrc1, Rsrc2, and Rdest are registers. MEM is a (base register, offset) pair.

Branches compare two registers and, depending on the outcome of the comparison, move to a target address. The target address can be specified as a PC-relative offset or in a register (with no offset). Assume that the pipeline structure of the machine is as follows:

IF RF ALU1 MEM ALU2 WB

The first ALU stage is used for effective address calculation for memory references and branches. The second ALU stage is used for operations and branch comparison. RF is both decode and register-fetch stage. Assume that when a register read and a register write of the same register occur in the same cycle, the write data is forwarded.

[bookmark: _qx42p1a05nga]Part (A) [4 points]
Find the number of adders, counting any adder or incrementer, needed to minimize the number of structural hazards. Justify why you need this number of adders.

[bookmark: _iartlci9h6m]Part (B) [4 points]
Find the number of register read and write ports and memory read and write ports needed to minimize the number of structural hazards. Justify why you need this number of ports for the register file and memory.

[bookmark: _2ef8rb4hfivo]Part (C) [3 points]
Will data forwarding from the ALU2 stage to any of ALU1, MEM, or ALU2 stages reduce or avoid stalls? Explain your answer for each stage.

[bookmark: _hymd69sqjjuj]Part (D) [3 points]
Will data forwarding from the MEM stage to any of ALU1, MEM, or ALU2 stages reduce or avoid stalls? Explain your answer for each stage.
