Chapter 3 – Instruction-Level Parallelism and its Exploitation (Part 1)

ILP vs. Parallel Computers
Dynamic Scheduling (Section 3.4, 3.5)
Dynamic Branch Prediction (Section 3.3, 3.9, and Appendix C)
Hardware Speculation and Precise Interrupts (Section 3.6)
Multiple Issue (Section 3.7)
Static Techniques (Section 3.2, Appendix H)
Limitations of ILP
Multithreading (Section 3.11)
Putting it Together (Mini-projects)
ILP vs. Parallel Computers

Instruction-Level Parallelism (ILP)

Instructions of single process (or thread) executed in parallel
Parallel components must *appear* to execute in sequential program order

Parallel Computers or Multiprocessors

Program divided into multiple processes (or threads)
Instructions of multiple threads executed in parallel
Typically also involves ILP within each thread
No a priori sequential order between parallel threads
Dynamic Scheduling - Basics

The situation:
DIV.D F0, F2, F4
ADD.D F10, F0, F8
MULT.D F6, F6, F14

The problem:
 ADD stalls due to RAW hazard
 MULT stalls because ADD stalls

Example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIV.D</td>
<td>IF</td>
<td>ID</td>
<td>E/</td>
<td>E/</td>
<td>E/</td>
<td>E/</td>
<td>MEM</td>
<td>WB</td>
</tr>
<tr>
<td>ADD.D</td>
<td>IF</td>
<td>ID</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>E+</td>
<td>E+</td>
<td></td>
</tr>
<tr>
<td>MULT.D</td>
<td>IF</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>ID</td>
<td>E*</td>
<td>why stall?</td>
<td></td>
</tr>
</tbody>
</table>

In-order execution limits performance
Dynamic Scheduling - Basics (Cont.)

Solutions

Static Scheduling
Dynamic Scheduling

Static Scheduling (Software)

 Compiler reorganizes instructions
 +
 +
 +
 (Will see more later)

Dynamic Scheduling (Hardware)

 Hardware reorganizes instructions
 +
 +
 +
In-order execution - Static

- Instructions sent to execution units sequentially
- Stall instruction $i + 1$ if instruction i stalls for lack of operands

Out-of-order execution - Dynamic

- Send independent instructions to execution units as soon as possible
Dynamic Scheduling Basics (Cont.)

Original simple pipeline
 ID – decode, check all hazards, read operands
 EX – execute

Dynamic pipeline
 Split ID (“issue to execution unit”) into two parts
 Check for structural hazards
 Wait for data dependences

New organization (conceptual):
 Issue – decode, check structural hazards, read ready operands
 ReadOps – wait until data hazards clear, read operands, begin execution

Issue stays in-order; ReadOps/beginning of EX is out-of-order
Dynamic scheduling can create WAW, WAR hazards, and imprecise exceptions

WAW hazards with dynamic scheduling

```
DIV.D F0, F2, F4
ADD.D F10, F0, F8
MUL.D F10, F8, F14
```

WAR hazards with dynamic scheduling

```
DIV.D F0, F2, F4
ADD.D F10, F0, F8
MUL.D F8, F8, F14
```

Can always stall,

- but more aggressive solution with *register renaming*
Register Renaming - Tomasulo’s Algorithm

Registers are *Names* for data values

Think of register specifiers as *tags*

NOT storage locations

Tomasulo's algorithm exploited above in IBM 360/91

WAW hazards:

- DIV.D F0, F2, F4
- ADD.D F10, F0, F8
- MUL.D F10, F8, F14

WAR hazards:

- DIV.D F0, F2, F4
- ADD.D F10, F0, F8
- MUL.D F8, F8, F14
Some History - IBM 360/91

Fast 360 for scientific code
 Completed in 1967
 Predates cache memories

Pipelined, rather than multiple, functional units (FU)
 We will assume multiple functional units

360 had register memory instructions, we don’t
Register Renaming - Tomasulo’s Algorithm

Tomasulo’s algm uses *reservation stations* for register renaming

Instruction is “issued” to a reservation station

A pending operand is designated via a tag

Tag = reservation station that will provide the operand

Reservation station with pending instruction fetches and buffers the operand when it becomes available

All FUs place output on the *common data bus* (CDB) with tag

Waiting reservation station gets the data from the CDB (register bypass)
Extend simple pipeline as example for Tomasulo's algorithm
Assume multiple FUs

Copyright © 2019, Elsevier Inc. All rights Reserved.
Our Tomasulo Pipeline

3-stage Execution (ignore IF and MEM)

Issue
- Get instruction from queue
- ALU Op: Check for available reservation station
- Load/Store: Check for available load/store buffer
- If not, stall due to structural hazard

Execute
- If operands available, execute operation
- If not, monitor CDB for operand

Write
- If CDB available, write it on CDB
- If not, stall
Reservation Stations

Handle distributed hazard detection and instruction control

Everything, except store buffers, has a tag

4-bit tag specifies reservation station or load buffer
Specifies which FU will produce result

Register specifier is used to assign tags

THEN IT'S DISCARDED!

Register specifers are ONLY used in ISSUE
Our Tomasulo Pipeline, cont

Reservation Stations

- **Op**: Opcode
- \(Q_j, Q_k \): Tag Fields
- \(V_j, V_k \): Operand values
- **Busy**: Currently in use

Register File and Store Buffer

- \(Q_i \): Tag Field
- **Busy**: Currently in use

Load and Store Buffers

- **Busy**: Currently in use
- **A**: Address

Latencies: FP+ = 2, FP* = 10, FP/ = 40, Load/int = 1
Example code

```
L.D    F6,34(R2)
L.D    F2,45(R3)
MULT.D F0,F2,F4
SUB.D  F8,F6,F4
DIV.D  F10,F0,F6
ADD.D  F6,F8,F2
```
Tomasulo Example

Instruction Status (For illustration ONLY)

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Issue</th>
<th>Execute</th>
<th>Write</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.D</td>
<td>F6,34(R2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.D</td>
<td>F2,45(R3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MULT.D</td>
<td>F0,F2,F4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUB.D</td>
<td>F8,F6,F4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIV.D</td>
<td>F10,F0,F6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADD.D</td>
<td>F6,F8,F2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FU Table

<table>
<thead>
<tr>
<th>FU</th>
<th>Name</th>
<th>Busy</th>
<th>Op</th>
<th>Vj</th>
<th>Vk</th>
<th>Qj</th>
<th>Qk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Add1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Add2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Add3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Mult1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Mult2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Register Result Status

<table>
<thead>
<tr>
<th>F0</th>
<th>F2</th>
<th>F4</th>
<th>F6</th>
<th>F8</th>
<th>F10</th>
<th>F12</th>
<th>…</th>
<th>F30</th>
</tr>
</thead>
</table>

| QI | Busy |
Tomasulo Example

Instruction Status (For illustration ONLY)

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Issue</th>
<th>Execute</th>
<th>Write</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.D</td>
<td>F6,34(R2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.D</td>
<td>F2,45(R3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MULT.D</td>
<td>F0,F2,F4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUB.D</td>
<td>F8,F6,F4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIV.D</td>
<td>F10,F0,F6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADD.D</td>
<td>F6,F8,F2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FU Name Busy Op Vj Vk Qj Qk

<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>Busy</th>
<th>Op</th>
<th>Vj</th>
<th>Vk</th>
<th>Qj</th>
<th>Qk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Add1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Add2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Add3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Mult1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Mult2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Register Result Status

<table>
<thead>
<tr>
<th>F0</th>
<th>F2</th>
<th>F4</th>
<th>F6</th>
<th>F8</th>
<th>F10</th>
<th>F12</th>
<th>...</th>
<th>F30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QI</th>
<th>Busy</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
Tomasulo Example

Instruction Status (For illustration ONLY)

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Issue</th>
<th>Execute</th>
<th>Write</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.D</td>
<td>F6,34(R2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.D</td>
<td>F2,45(R3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MULT.D</td>
<td>F0,F2,F4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUB.D</td>
<td>F8,F6,F4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIV.D</td>
<td>F10,F0,F6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADD.D</td>
<td>F6,F8,F2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FU

<table>
<thead>
<tr>
<th>FU</th>
<th>Name</th>
<th>Busy</th>
<th>Op</th>
<th>Vj</th>
<th>Vk</th>
<th>Qj</th>
<th>Qk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Add1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Add2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Add3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Mult1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Mult2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Register Result Status

<table>
<thead>
<tr>
<th>F0</th>
<th>F2</th>
<th>F4</th>
<th>F6</th>
<th>F8</th>
<th>F10</th>
<th>F12</th>
<th>...</th>
<th>F30</th>
</tr>
</thead>
<tbody>
<tr>
<td>QI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Busy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Out-of-order loads and stores?

CDB is a bottleneck
 Could duplicate
 Increases the required hardware
Complex implementation
Advantages

- Distribution of hazard detection
- Elimination of WAR and WAW stalls

Common Data Bus

- Broadcasts results to multiple instructions, bypasses registers
- Central bottleneck
 - Could duplicate (increases required hardware)

Register Renaming

- Eliminates WAR and WAW Hazards
- Allows dynamic loop unrolling
 - Especially important with only 4 registers
- Requires many associative lookups
Loops with Tomasulo’s Algorithm

Consider the following example:

FORTRAN:
DO I = 1, N
 C[I] = A[I] + s * B[I]

ASSEMBLY:
L.D F0, A(R1)
L.D F2, B(R1)
MUL.D F2, F2, F4 /* s in F4 */
ADD.D F2, F2, F0
S.D C(R1), F2
Branch code

What would Tomasulo’s algorithm do?