AMD Zen Architecture

Boru Chen (boruc2)
Runyao Fan (runyaof2)
Matt Hokinson (mhk7)
Jadon Timothy Schuler (jadonts2)
Overview

- Zen microarchitecture
- Memory Hierarchy
- Multicore
- Security
Zen Microarchitecture
Zen Microarchitecture

- AMD64 ISA
- First came out in 2017
- Zen 4: 2022
- Details of Zen 3 readily available

https://ieeexplore.ieee.org.proxy2.library.illinois.edu/document/9473057
Core Microarchitecture

- Zen 3 reports 19% increase in IPC compared to Zen 2, and Zen 4 reports 13% increase in IPC compared to Zen 3
- Better Branch Prediction
- Greater Parallelism in Integer Execution
- Greater Parallelism in Floating-point Execution

Core Microarchitecture - Branch Prediction

TAGE (TAgged GEometric predictors):

N predictors are used, where each predictor is indexed using a hash of PC and global branch history of varying length following a geometric series (eg: 0, 2, 4, 8, 16 when N = 5, P(0) does not consider any branch history).

Part of a predictor entry is used for tag match, where a tag is compared with a hashed value of PC and global branch history

Prediction made based on predictor with longest history and tag match.
Core Microarchitecture - Branch Prediction

Some improvements of Zen 3 architecture (compared to Zen 2):

L1 branch target buffer: 512 -> 1024 entries

L2 branch target buffer: 6656 entries

Indirect target array for indirect branches: 768 -> 1536 entries

https://ieeexplore-ieee-org.proxy2.library.illinois.edu/document/9718180
https://ieeexplore-ieee-org.proxy2.library.illinois.edu/document/9567108
https://ieeexplore-ieee-org.proxy2.library.illinois.edu/document/9473057
Core Microarchitecture - Integer Execution

Improvements of Zen 3 architecture (compared to Zen 2):

- Reorder buffer: 224 -> 256 entries
- Overall integer execution unit issue width: 7 -> 10

Instead of adding more ALUs which is costly, added new branch and store data capabilities at a lower cost, without extra write port overhead

https://ieeexplore.ieee.org.proxy2.library.illinois.edu/document/9718180
https://ieeexplore.ieee.org.proxy2.library.illinois.edu/document/9567108
https://ieeexplore.ieee.org.proxy2.library.illinois.edu/document/9473057
Core Microarchitecture - Floating-point Execution

Some improvements of Zen 3 architecture (compared to Zen 2):

Scheduler: 36 -> 64 entries

Dedicated Float-to-int and store units

Greater utilization of main functional units (2 add units and 2 mult units) on actual compute instructions

https://ieeexplore.ieee-org.proxy2.library.illinois.edu/document/9718180
https://ieeexplore.ieee-org.proxy2.library.illinois.edu/document/9567108
https://ieeexplore.ieee-org.proxy2.library.illinois.edu/document/9473057
AVX-512

- New instruction set for 512-bit vector instructions, implemented with multiple 256-bit SIMD execution units
- Able to store only a single ROB entry for each instruction
- However, Zen has a small store queue, and can therefore only handle a single 265-bit store per cycle

Memory Hierarchy
Load/Store Unit

- 3 memory operation per cycle
- 72 out-of-order loads
- 24 outstanding missing with Miss Address Buffer
- Store to load forwarding (when older store contains load’s bytes)
- Write combining operations
- Prefetcher
 - L1 stream/L1 stride/L1 region/L2 stream/L2 Up(down)
 - MSR disable prefetcher

56665, Software Optimization Guide for AMD Family 19h Processors (PUB)
Cache

- **L1 cache**
 - 32KB 8-way L1 D Cache
 - Write back
 - ECC
 - 32KB 8-way L1 I Cache
 - Prefetch with branch predictor
 - Parity
 - **Linear address utag/way-predictor**

- **512KB 8-way L2 Cache (1MB for Zen 4)**
 - Write back
 - Inclusive

- **32MB L3 Cache**
 - Write back
 - **Mostly exclusive (read code, shared by multiple cores)**
 - Shadow L2 tag

56665, Software Optimization Guide for AMD Family 19h Processors (PUB)
Linear address utag/way-predictor

- **How work?**
- **Strength:**
 - Speculative load data (bypass address translation)
 - Reduce bank conflicts
 - Less power consumption (large physical tag, small utag)
- **Weakness:**
 - Address alias
 - Continuous missing
 - Security issue
 - Timing side-channel

56665, Software Optimization Guide for AMD Family 19h Processors (PUB)

https://mlq.me/download/takeaway.pdf
TLB

- **L1 ITLB / L1 DTLB**
 - Fully-associative
 - 64 entries
 - 4Kbyte/2Mbyte/1Gbyte page entries

- **L2 ITLB**
 - 8-way set associative
 - 512 entries
 - 4Kbyte/2Mbyte page entries

- **L2 DTLB**
 - 16-way set associative
 - 2048 entries
 - 4Kbyte/2Mbyte page entries

- **6 Page Table Walkers**
Multicore
Multicore - Overview (EPYC 9004)

Every core supports Simultaneous Multithreading (SMT)

- Each core supports 2 hardware threads
- Hardware threads share a core’s L2 cache

Cores are further divided into Core Complexes (CCX)

- 8 cores per CCX
- 16 total concurrent hardware threads
- Shared L3 cache

Placed on a Core Complex Die (CCD)
Multicore - Core Complexes

Figure 1-2: Eight Compute Cores sharing an L3 cache within a single Core Complex Die (CCD)

Figure 1-3: AMD EPYC 9004 Series Processor internals interconnect via AMD Infinity Fabric (12 CCD processor shown)

Multicore - Infinity Fabric: The Interconnect

- This is where the magic happens!
- Used between cores, memory, CPUs, and more
- 36 Gb/s between CCX and I/O die
- I/O die offers 12 Infinity Fabric interfaces for CCXs
 - Each CCX supports up to 2 interfaces (72 Gb/s max bandwidth)
- Some PCIe lanes are shared with Infinity Fabric, so tradeoff between interprocessor communication and I/O lanes

Multicore - Infinity Fabric Continued

- Not much up-to-date info, unfortunately
- **SDF (Scalable Data Fabric)**
 - Data communication plane
- **Cache Coherent Master (CCM)**
 - Handles coherency
- **Coherent AMD Socket Extender**
 - **CAKE** links dies/chips together
- **Key Takeaway:**
 - Topology is configurable!

Multicore - Network Topology

- **NUMA** (Non-Uniform Memory Access), **4 NPS** (Nodes Per Socket) shown

Figure 1-4: The AMD EPYC 9004 System on Chip (SoC) consists of up to 12 CCDs and a central IOD
Multicore - Network Topology Continued

- **NUMA is configurable in BIOS!**
 - **NPS=2:** Affinity is based on halves rather than quadrants
 - **NPS=1:** The entire processor is a single NUMA node
 - **LLC as NUMA:** Each CCD is treated as a NUMA node by its L3 cache

- **Dual Socket Configuration**
 - 2 identical processors connected via xGMI (external GMI)

- **Up to 64 lanes of CXL 1.1+** (Compute Express Link) for memory expansion

- **Cache coherence**
 - **MOESI (Modified, Owned, Exclusive, Shared, Invalid)** protocol used (from AMD64)

Security
Security

- AMD Infinity Guard
- AMD Memory Guard
- AMD Shadow Stack
- Side Channel Defenses
AMD Infinity Guard

- Part of the AMD Secure Processor build in to AMD Zen Chips
 - Runs on 32-bit microcontroller with it’s own secure OS
- Supports an array of features
 - HW Validated Boot
 - AMD Secure Memory Encryption (SME)
 - AMD Secure Encrypted Virtualization (SEV) and Secure Nested Paging (SNP)

SEV-SNP

- Idea: Want strict isolation between different virtualized guests
- Gives each VM their own encryption key
- Isolation Focus: Use RMP (Reverse Map table) to ensure integrity/access permissions
- RMP also enforces that there can be no aliasing of physical pages and memory remapping can only be done by trusted entities

Virtualization Defenses

AMD Memory Guard

- Built into the AMD Secure Processor (ASP)
- Threat: Some encryption metadata (AES Keys) stored in the DRAM can be read in cold boot attacks or DRAM snooping
- Memory guard provides fast (HW supported) AES encryption with random keys, stored within the processor itself

Shadow Stack and Side Channels

- Control Flow Hijacking (ROP)
- Uses a shadow stack to ensure integrity of return addresses
- Spectre
- Optional protection to track source of BTB entries
 - Guest/Thread/Process tagged in the buffer, goal is to avoid malicious/benign interference
 - Can flush BTB so that we don’t use speculative entries installed by others