
Chapter 5: Multiprocessors (Thread-Level Parallelism)– Part 2

Introduction

What is a parallel or multiprocessor system?

Why parallel architecture?

Performance potential

Flynn classification

Communication models

Architectures

Centralized sharedmemory

Distributed sharedmemory

Parallel programming

Synchronization

Memory consistency models

Memory Consistency Model - Motivation
Example shared-memory program

Initially all locations = 0
Processor 1 Processor 2
Data = 23 while (Flag != 1) {;}
Flag = 1 … = Data

Execution (only shared-memory operations)

Processor 1 Processor 2
Write, Data, 23
Write, Flag, 1

Read, Flag, 1
Read, Data, ___

Memory Consistency Model: Definition

Memory consistency model

Order in which memory operations will appear to execute
Þ What value can a read return?

Affects ease-of-programming and performance

The Uniprocessor Model

Program text defines total order = program order
Uniprocessor model

Memory operations appear to execute one-at-a-time in program
order

Þ Read returns value of last write
BUT uniprocessor hardware

Overlap, reorder operations
Model maintained as long as

maintain control and data dependences
Þ Easy to use + high performance

Implicit Memory Model
Sequential consistency (SC) [Lamport]

Result of an execution appears as if
• All operations executed in some sequential order (i.e., atomically)
• Memory operations of each process in program order

MEMORY

P1 P3P2 Pn

Understanding Program Order – Example 1
Initially Flag1 = Flag2 = 0

P1 P2
Flag1 = 1 Flag2 = 1
if (Flag2 == 0) if (Flag1 == 0)

critical section critical section

Execution:

P1 P2
(Operation, Location, Value) (Operation, Location, Value)
Write, Flag1, 1 Write, Flag2, 1

Read, Flag2, 0 Read, Flag1, ___

Understanding Program Order – Example 1

P1 P2
Write, Flag1, 1 Write, Flag2, 1

Read, Flag2, 0 Read, Flag1, 0

Can happen if
• Write buffers with read bypassing
• Overlap, reorder write followed by read in h/w or compiler
• Allocate Flag1 or Flag2 in registers

Understanding Program Order - Example 2
Initially A = Flag = 0
P1 P2
A = 23; while (Flag != 1) {;}
Flag = 1; ... = A;

P1 P2
Write, A, 23 Read, Flag, 0
Write, Flag, 1

Read, Flag, 1
Read, A, ____

Understanding Program Order - Example 2
Initially A = Flag = 0
P1 P2
A = 23; while (Flag != 1) {;}
Flag = 1; ... = A;

P1 P2
Write, A, 23 Read, Flag, 0
Write, Flag, 1

Read, Flag, 1
Read, A, 0

Can happen if
Overlap or reorder writes or reads in hardware or compiler

Understanding Program Order: Summary

SC limits program order relaxation:
Write ® Read
Write ® Write
Read ® Read, Write

Understanding Atomicity

A mechanism needed to propagate a write to other copies

Þ Cache coherence protocol

P1

CACHE

MEMORY MEMORY

A OLD

P2 Pn

A OLD

A OLD

BUS

Cache Coherence Protocols

How to propagate write?
Invalidate -- Remove old copies from other caches
Update -- Update old copies in other caches to new values

Understanding Atomicity - Example 1
Initially A = B = C = 0

P1 P2 P3 P4
A = 1; A = 2; while (B != 1) {;} while (B != 1) {;}
B = 1; C = 1; while (C != 1) {;} while (C != 1) {;}

tmp1 = A; tmp2 = A;

Understanding Atomicity - Example 1
Initially A = B = C = 0

P1 P2 P3 P4
A = 1; A = 2; while (B != 1) {;} while (B != 1) {;}
B = 1; C = 1; while (C != 1) {;} while (C != 1) {;}

tmp1 = A; 1 tmp2 = A; 2

Can happen if updates of A reach P3 and P4 in different order

Coherence protocol must serialize writes to same location
(Writes to same location should be seen in same order by all)

Understanding Atomicity - Example 2
Initially A = B = 0
P1 P2 P3
A = 1 while (A != 1) ; while (B != 1) ;

B = 1; tmp = A

P1 P2 P3
Write, A, 1

Read, A, 1
Write, B, 1

Read, B, 1
Read, A, 0

Can happen if read returns new value before all copies see it

SC Summary
SC limits

Program order relaxation:
Write ® Read
Write ® Write
Read ® Read, Write

When a processor can read the value of a write
Unserialized writes to the same location

Alternative
(1) Aggressive hardware techniques proposed to get SC w/o penalty

using speculation and prefetching
But compilers still limited by SC

(2) Give up sequential consistency
Use relaxed models

Classification for Relaxed Models

Typically described as system optimizations - system-centric
Optimizations

Program order relaxation:
Write ® Read
Write ® Write
Read ® Read, Write

Read others’ write early
Read own write early

All models provide safety net
All models maintain uniprocessor data and control dependences,

write serialization

Some System-Centric Models

SYNCüüüüüPowerPC

various MEMBARsüüüüRMO

MB, WMBüüüüAlpha

release, acquire,
nsync, RMW

üüüüüRCpc

release, acquire,
nsync, RMW

üüüüRCsc

synchronizationüüüüWO

RMW, STBARüüüPSO

RMWüüüPC

RMWüüTSO

serialization
instructions

üIBM 370

Safety NetRead Own
Write Early

Read Others’
Write Early

R ®RW
Order

W ®W
Order

W ®R
Order

Relaxation:

System-Centric Models: Assessment

System-centric models provide higher performance than SC
BUT 3P criteria

Programmability?
Lost intuitive interface of SC

Portability?
Many different models

Performance?
Can we do better?

Need a higher level of abstraction

An Alternate Programmer-Centric View

One source of consensus
Programmers need SC to reason about programs

But SC not practical today
How about the next best thing…

A Programmer-Centric View
Specify memory model as a contract

System gives sequential consistency
IF programmer obeys certain rules

+ Programmability
+ Performance
+ Portability

The Data-Race-Free-0 Model: Motivation

Different operations have different semantics
P1 P2
A = 23; while (Flag != 1) {;}
B = 37; … = B;
Flag = 1; … = A;

Flag = Synchronization; A, B = Data

Can reorder data operations
Distinguish data and synchronization

Need to
- Characterize data / synchronization

- Prove characterization allows optimizations w/o violating SC

Data-Race-Free-0: Some Definitions

Two operations conflict if
– Access same location
– At least one is a write

Data-Race-Free-0: Some Definitions (Cont.)
(Consider SC executions Þ global total order)
Two conflicting operations race if

– From different processors
– Execute one after another (consecutively)

P1 P2
Write, A, 23
Write, B, 37

Read, Flag, 0
Write, Flag, 1

Read, Flag, 1
Read, B, ___
Read, A, ___

Races usually “synchronization,” others “data”
Can optimize operations that never race

Data-Race-Free-0 (DRF0) Definition

Data-Race-Free-0 Program

All accesses distinguished as either synchronization or data

All races distinguished as synchronization

(in any SC execution)

Data-Race-Free-0 Model

Guarantees SC to data-race-free-0 programs

It is widely accepted that data races make programs hard to debug
independent of memory model (even with SC)

Distinguishing/Labeling Memory Operations

Need to distinguish/label operations at all levels
• High-level language
• Hardware
Compiler must translate language label to hardware label

Java: volatiles, synchronized
C++: atomics
Hardware: fences inserted before/after synchronization

Data-Race-Free Summary

The idea
Programmer writes data-race-free programs
System gives SC

For programmer
Reason with SC
Enhanced portability

For hardware and compiler
More flexibility

Finally, convergence on hardware and software sides
(BUT still many problems…)

