
Chapter 5: Multiprocessors (Thread-Level Parallelism)– Part 2

Introduction

What is a parallel or multiprocessor system? 

Why parallel architecture? 

Performance potential 

Flynn classification 

Communication models

Architectures 

Centralized sharedmemory

Distributed sharedmemory 

Parallel programming

Synchronization 

Memory consistency models



Memory Consistency Model - Motivation
Example shared-memory program

Initially all locations = 0
Processor 1 Processor 2
Data = 23 while (Flag != 1) {;}
Flag = 1 … = Data

Execution (only shared-memory operations)

Processor 1 Processor 2
Write, Data, 23
Write, Flag, 1

Read, Flag, 1
Read, Data, ___



Memory Consistency Model: Definition

Memory consistency model 

Order in which memory operations will appear to execute 
Þ What value can a read return?

Affects ease-of-programming and performance 



The Uniprocessor Model

Program text defines total order = program order
Uniprocessor model

Memory operations appear to execute one-at-a-time in program 
order

Þ Read returns value of last write
BUT uniprocessor hardware

Overlap, reorder operations
Model maintained as long as

maintain control and data dependences
Þ Easy to use + high performance



Implicit Memory Model
Sequential consistency (SC) [Lamport]

Result of an execution appears as if 
• All operations executed in some sequential order (i.e., atomically)
• Memory operations of each process in program order

MEMORY

P1 P3P2 Pn



Understanding Program Order – Example 1
Initially Flag1 = Flag2 = 0 

P1 P2 
Flag1 = 1 Flag2 = 1 
if (Flag2 == 0) if (Flag1 == 0) 

critical section critical section 

Execution:

P1 P2
(Operation, Location, Value) (Operation, Location, Value)
Write, Flag1, 1 Write, Flag2, 1 

Read, Flag2, 0 Read, Flag1, ___



Understanding Program Order – Example 1

P1 P2
Write, Flag1, 1 Write, Flag2, 1 

Read, Flag2, 0 Read, Flag1,    0

Can happen if
• Write buffers with read bypassing
• Overlap, reorder write followed by read in h/w or compiler
• Allocate Flag1 or Flag2 in registers



Understanding Program Order - Example 2
Initially A = Flag = 0
P1 P2 
A = 23; while (Flag != 1) {;} 
Flag = 1; ... = A; 

P1 P2 
Write, A, 23 Read, Flag, 0 
Write, Flag, 1 

Read, Flag, 1 
Read, A, ____



Understanding Program Order - Example 2
Initially A = Flag = 0
P1 P2 
A = 23; while (Flag != 1) {;} 
Flag = 1; ... = A; 

P1 P2 
Write, A, 23 Read, Flag, 0 
Write, Flag, 1 

Read, Flag, 1 
Read, A,   0

Can happen if
Overlap or reorder writes or reads in hardware or compiler



Understanding Program Order: Summary

SC limits program order relaxation:
Write ® Read
Write ® Write 
Read ® Read, Write



Understanding Atomicity

A mechanism needed to propagate a write to other copies 

Þ Cache coherence protocol 

P1

CACHE

MEMORY MEMORY

A OLD

P2 Pn

A OLD

A OLD

BUS



Cache Coherence Protocols

How to propagate write? 
Invalidate -- Remove old copies from other caches 
Update -- Update old copies in other caches to new values 



Understanding Atomicity - Example 1
Initially A = B = C = 0 

P1 P2 P3                              P4
A = 1; A = 2;            while (B != 1) {;} while (B != 1) {;} 
B = 1; C = 1;            while (C != 1) {;}         while (C != 1) {;}

tmp1 = A;                   tmp2 = A;    



Understanding Atomicity - Example 1
Initially A = B = C = 0 

P1 P2 P3                              P4
A = 1; A = 2;            while (B != 1) {;} while (B != 1) {;} 
B = 1; C = 1;            while (C != 1) {;}         while (C != 1) {;}

tmp1 = A;     1 tmp2 = A;    2

Can happen if updates of A reach P3 and P4 in different order

Coherence protocol must serialize writes to same location
(Writes to same location should be seen in same order by all)



Understanding Atomicity - Example 2
Initially A = B = 0 
P1 P2 P3 
A = 1 while (A != 1) ; while (B != 1) ; 

B = 1; tmp = A 

P1 P2 P3 
Write, A, 1 

Read, A, 1 
Write, B, 1 

Read, B, 1 
Read, A,   0

Can happen if read returns new value before all copies see it



SC Summary
SC limits

Program order relaxation:
Write ® Read
Write ® Write 
Read ® Read, Write

When a processor can read the value of a write
Unserialized writes to the same location

Alternative
(1) Aggressive hardware techniques proposed to get SC w/o penalty

using speculation and prefetching
But compilers still limited by SC

(2) Give up sequential consistency
Use relaxed models



Classification for Relaxed Models

Typically described as system optimizations - system-centric
Optimizations

Program order relaxation:
Write ® Read
Write ® Write 
Read ® Read, Write

Read others’ write early
Read own write early

All models provide safety net
All models maintain uniprocessor data and control dependences, 

write serialization 



Some System-Centric Models

SYNCüüüüüPowerPC

various MEMBARsüüüüRMO

MB, WMBüüüüAlpha

release, acquire, 
nsync, RMW

üüüüüRCpc

release, acquire, 
nsync, RMW

üüüüRCsc

synchronizationüüüüWO

RMW, STBARüüüPSO

RMWüüüPC

RMWüüTSO

serialization 
instructions

üIBM 370

Safety NetRead Own 
Write Early

Read Others’ 
Write Early

R ®RW 
Order

W ®W 
Order

W ®R 
Order

Relaxation:



System-Centric Models: Assessment

System-centric models provide higher performance than SC
BUT  3P criteria

Programmability?
Lost intuitive interface of SC

Portability?
Many different models

Performance?
Can we do better?

Need a higher level of abstraction  



An Alternate Programmer-Centric View

One source of consensus
Programmers need SC to reason about programs

But SC not practical today
How about the next best thing…



A Programmer-Centric View
Specify memory model as a contract

System gives sequential consistency
IF programmer obeys certain rules

+ Programmability
+ Performance
+ Portability



The Data-Race-Free-0 Model: Motivation 

Different operations have different semantics
P1 P2 
A =  23; while (Flag != 1)  {;}
B =  37;                                     … = B;
Flag = 1;                                   … = A; 

Flag = Synchronization; A, B = Data 

Can reorder data operations 
Distinguish data and synchronization 

Need to
- Characterize data / synchronization

- Prove characterization allows optimizations w/o violating SC



Data-Race-Free-0: Some Definitions

Two operations  conflict if
– Access same location
– At least one is a write



Data-Race-Free-0: Some Definitions (Cont.)
(Consider SC executions Þ global total order)
Two conflicting operations race if

– From different processors
– Execute one after another (consecutively)

P1 P2 
Write, A, 23 
Write, B, 37

Read, Flag, 0
Write, Flag, 1

Read, Flag, 1
Read, B, ___
Read, A, ___

Races usually  “synchronization,” others  “data”
Can optimize operations that never race



Data-Race-Free-0 (DRF0) Definition

Data-Race-Free-0 Program

All accesses distinguished as either synchronization or data

All races distinguished as synchronization

(in any SC execution)

Data-Race-Free-0 Model

Guarantees SC to data-race-free-0 programs

It is widely accepted that data races make programs hard to debug 
independent of memory model (even with SC)



Distinguishing/Labeling Memory Operations

Need to distinguish/label operations at all levels
• High-level language 
• Hardware 
Compiler must translate language label to hardware label

Java: volatiles, synchronized
C++: atomics
Hardware: fences inserted before/after synchronization



Data-Race-Free Summary

The idea
Programmer writes data-race-free programs
System gives SC

For programmer
Reason with SC
Enhanced portability

For hardware and compiler
More flexibility

Finally, convergence on hardware and software sides
(BUT still many problems…)


