
Chapter 5: Thread-Level Parallelism – Part 1

Introduction

What is a parallel or multiprocessor system? 

Why parallel architecture? 

Performance potential 

Flynn classification 

Communication models

Architectures 

Centralized shared-memory

Distributed shared-memory 

Parallel programming

Synchronization 

Memory consistency models



What is a parallel or multiprocessor system?

Multiple processor units working together to solve the same problem 

Key architectural issue: Communication model 



Why parallel architectures?
Absolute performance 

Technology and architecture trends
Dennard scaling, ILP wall, Moore’s law

Þ Multicore chips 

Connect multicore together for even more parallelism 



Amdahl's Law is pessimistic 
Let s be the serial part 
Let p be the part that can be parallelized n ways 
Serial: SSPPPPPP 
6 processors: SSP
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Speedup = 8/3 = 2.67 
T(n) =  
As n ® ¥, T(n) ®

Pessimistic

Performance Potential
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Performance Potential (Cont.)

Gustafson's Corollary 
Amdahl's law holds if run same problem size on larger machines 
But in practice, we run larger problems and ''wait'' the same time



Performance Potential (Cont.)
Gustafson's Corollary (Cont.) 

Assume for larger problem sizes 
Serial time fixed (at s) 
Parallel time proportional to problem size (truth more complicated) 

Old Serial: SSPPPPPP 
6 processors: SSPPPPPP 

PPPPPP 
PPPPPP 
PPPPPP 
PPPPPP 
PPPPPP 

Hypothetical Serial:
SSPPPPPP PPPPPP PPPPPP PPPPPP PPPPPP PPPPPP 

Speedup = (8+5*6)/8 = 4.75 
T'(n) = s + n*p; T'(¥) ® ¥!!!! 

How does your algorithm ''scale up''? 



Flynn classification

Single-Instruction Single-Data (SISD) 

Single-Instruction Multiple-Data (SIMD) 

Multiple-Instruction Single-Data (MISD) 

Multiple-Instruction Multiple-Data (MIMD)



Communication models

Shared-memory 

Message passing 

Data parallel 



Communication Models: Shared-Memory

Each node a processor that runs a process 
One shared memory 

Accessible by any processor 
The same address on two different processors refers to the 

same datum 
Therefore, write and read memory to 

Store and recall data 
Communicate, Synchronize (coordinate)

interconnect

P P P
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Communication Models: Message Passing

Each node a computer 
Processor – runs its own program (like SM) 
Memory – local to that node, unrelated to other memory 

Add messages for internode communication, send and receive like 
mail

interconnect

P   M P   M P   M



Communication Models: Data Parallel 

Virtual processor per datum 

Write sequential programs with ''conceptual PC'' and let parallelism 
be within the data (e.g., matrices) 

C = A + B 

Typically SIMD architecture, but MIMD can be as effective 

interconnect

P   M P   M P   M



Architectures

All mechanisms can usually be synthesized by all hardware 

Key: which communication model does hardware support best? 

Virtually all small-scale systems, multicores are shared-memory 



Which is Best Communication Model to Support?

Shared-memory 
Used in small-scale systems 
Easier to program for dynamic data structures 
Lower overhead communication for small data 
Implicit movement of data with caching 
Hard to build? 

Message-passing 
Communication explicit harder to program? 
Larger overheads in communication OS intervention? 
Easier to build? 



Shared-Memory Architecture

For now, assume interconnect is a bus – centralized architecture

The model 

INTERCONNECT

PROC PROC PROC

MEMORY



Centralized Shared-Memory Architecture 

PROC PROC PROC

MEMORY

BUS



Centralized Shared-Memory Architecture (Cont.)

For higher bandwidth (throughput) 

For lower latency

Problem? 



Centralized Shared-Memory Architecture (Cont.)**

For higher bandwidth (throughput)

For lower latency

Problem?

PROC

MEMORY

BUS

PROC PROC

MEMORY MEMORY



For higher bandwidth (throughput) 

For lower latency

Problem? 

Centralized Shared-Memory Architecture (Cont.)**
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MEMORY

BUS

PROC PROC

MEMORY MEMORY
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Cache Coherence Problem

BUS

PROC 2PROC 1 PROC n

CACHE

MEMORY MEMORYA

A



BUS

PROC 2PROC 1 PROC n

CACHE

MEMORY MEMORYA

A

Cache Coherence Solutions

Snooping

Problem with centralized architecture



MSI Coherence Protocol



MSI Coherence Protocol



Distributed Shared-Memory (DSM) Architecture 

Use a higher bandwidth interconnection network 

Uniform memory access architecture (UMA) 

PROC 2PROC 1 PROC n

CACHE

MEMORY MEMORY

CACHE CACHE

MEMORY

GENERAL INTERCONNECT



Distributed Shared-Memory (DSM) - Cont. 

For lower latency: Non-Uniform Memory Access architecture (NUMA) 



Distributed Shared-Memory (DSM) -- Cont.**

For lower latency: Non-Uniform Memory Access architecture (NUMA) 

SWITCH/NETWORK
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Non-Bus Interconnection Networks

Example interconnection networks



Distributed Shared-Memory - Coherence Problem
Directory scheme

Level of indirection! 

SWITCH/NETWORK
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Distributed Shared-Memory - Coherence Problem**

Directory scheme

Level of indirection! 

SWITCH/NETWORK

PROC

MEM

CACHE

PROC

MEM

CACHE

PROC

MEM

CACHEDIR DIR DIR



Parallel Programming Example

Add two matrices: C = A + B 

Sequential Program 
main(argc, argv) 
int argc; char *argv; 
{

Read(A); 
Read(B); 
for (i = 0; i ! N; i++) 

for (j = 0; j ! N; j++) 
C[i,j] = A[i,j] + B[i,j]; 

Print(C);
}



Parallel Program Example (Cont.)



Parallel Program Example (Cont.)**
main(argc, argv) 
int argc; char *argv; 
{ 

Read(A); 
Read(B); 
for (p = 1; p = number—of—processors; p++) 

create—thread(p, start—procedure); 
start—procedure(); 
wait—for—all—threads—to—be—done(); 
Print(C); 

}

start—procedure() 
{ 

for (i = my—rows—begin; i != my—rows—end; i++) 
for (j = 0, j ! N, j++) 

C[i,j] = A[i,j] + B[i,j] 
indicate—done();

}



The Parallel Programming Process



The Parallel Programming Process**

Break up computation into tasks 

Break up data into chunks 
Necessary for message passing machines 

Introduce synchronization for correctness 



Synchronization

Communication – Exchange data
Synchronization – Exchange data to order events

Mutual exclusion or atomicity
Event ordering or Producer/consumer

Point to Point
Flags

Global
Barriers



Mutual Exclusion

Example
Each processor needs to occasionally update a counter

Processor 1 Processor 2

Load reg1, Counter Load reg2, Counter
reg1 = reg1 + tmp1 reg2 = reg2 + tmp2
Store Counter, reg1 Store Counter, reg2



Mutual Exclusion Primitives

Hardware instructions
Test&Set

Atomically tests for 0 and sets to 1
Unset is simply a store of 0

while (Test&Set(L) != 0)  {;}
Critical Section
Unset(L)

Problem?



Mutual Exclusion Primitives**

Hardware instructions
Test&Set

Atomically tests for 0 and sets to 1
Unset is simply a store of 0

while (Test&Set(L) != 0)  {;}
Critical Section
Unset(L)

Problem - Traffic



Mutual Exclusion Primitives – Alternative?

Test&Test&Set



Mutual Exclusion Primitives – Alternative?**

Test&Test&Set

A:   while (L != 0)  {;}
if (Test&Set(L) == 0)  {

critical Section
}
else go to loop A

Problem?



Mutual Exclusion Primitives – Alternative?**

Test&Test&Set

A:   while (L != 0)  {;}
if (Test&Set(L) == 0)  {

critical Section
}
else go to loop A

Problem
Traffic on lock release
What if processor swapped out while holding lock?



Mutual Exclusion Primitives – Fetch&Add
Fetch&Add(var, data)

{ /* atomic action */
temp = var
var = temp + data
}
return temp

E.g., let X = 57
P1: a = Fetch&Add(X,3)
P2: b = Fetch&Add(X,5)

If P1 before P2, ?
If P2 before P1, ?
If P1, P2 concurrent ?



Point to Point Event Ordering

Example
Producer wants to indicate to consumer that data is ready

Processor 1 Processor 2
A[1] = … … = A[1]
A[2] = … … = A[2]

. .

. .
A[n] = … … = A[n]



Point to Point Event Ordering – Flags**
Example

Producer wants to indicate to consumer that data is ready

Processor 1 Processor 2
while (Flag != 1) {;}

A[1] = … … = A[1]
A[2] = … … = A[2]

. .

. .
A[n] = … … = A[n]

Flag = 1



Global Event Ordering – Barriers

Example
All processors produce some data
Want to tell all processors that it is ready
In next phase, all processors consume data produced previously

Use barriers



Implementing Barriers**

Simple barrier

temp = Fetch&Inc(count)
while (count != N) {;}

Problem:



Implementing Barriers**

Simple barrier

temp = Fetch&Inc(count)
while (count != N) {;}

Problem: Cannot use it again



Implementing Barriers**

local_flag = !local_flag
if Fetch&Inc(count) == N {

count = 1
flag = local_flag

}
while (flag != local_flag) {;}


