
Chapter 5: Thread-Level Parallelism – Part 1

Introduction

What is a parallel or multiprocessor system?

Why parallel architecture?

Performance potential

Flynn classification

Communication models

Architectures

Centralized shared-memory

Distributed shared-memory

Parallel programming

Synchronization

Memory consistency models

What is a parallel or multiprocessor system?

Multiple processor units working together to solve the same problem

Key architectural issue: Communication model

Why parallel architectures?
Absolute performance

Technology and architecture trends
Dennard scaling, ILP wall, Moore’s law

Þ Multicore chips

Connect multicore together for even more parallelism

Amdahl's Law is pessimistic
Let s be the serial part
Let p be the part that can be parallelized n ways
Serial: SSPPPPPP
6 processors: SSP

P
P
P
P
P

Speedup = 8/3 = 2.67
T(n) =
As n ® ¥, T(n) ®

Pessimistic

Performance Potential

1
s+p/n

1
s

Performance Potential (Cont.)

Gustafson's Corollary
Amdahl's law holds if run same problem size on larger machines
But in practice, we run larger problems and ''wait'' the same time

Performance Potential (Cont.)
Gustafson's Corollary (Cont.)

Assume for larger problem sizes
Serial time fixed (at s)
Parallel time proportional to problem size (truth more complicated)

Old Serial: SSPPPPPP
6 processors: SSPPPPPP

PPPPPP
PPPPPP
PPPPPP
PPPPPP
PPPPPP

Hypothetical Serial:
SSPPPPPP PPPPPP PPPPPP PPPPPP PPPPPP PPPPPP

Speedup = (8+5*6)/8 = 4.75
T'(n) = s + n*p; T'(¥) ® ¥!!!!

How does your algorithm ''scale up''?

Flynn classification

Single-Instruction Single-Data (SISD)

Single-Instruction Multiple-Data (SIMD)

Multiple-Instruction Single-Data (MISD)

Multiple-Instruction Multiple-Data (MIMD)

Communication models

Shared-memory

Message passing

Data parallel

Communication Models: Shared-Memory

Each node a processor that runs a process
One shared memory

Accessible by any processor
The same address on two different processors refers to the

same datum
Therefore, write and read memory to

Store and recall data
Communicate, Synchronize (coordinate)

interconnect

P P P

MMMMMMM

Communication Models: Message Passing

Each node a computer
Processor – runs its own program (like SM)
Memory – local to that node, unrelated to other memory

Add messages for internode communication, send and receive like
mail

interconnect

P M P M P M

Communication Models: Data Parallel

Virtual processor per datum

Write sequential programs with ''conceptual PC'' and let parallelism
be within the data (e.g., matrices)

C = A + B

Typically SIMD architecture, but MIMD can be as effective

interconnect

P M P M P M

Architectures

All mechanisms can usually be synthesized by all hardware

Key: which communication model does hardware support best?

Virtually all small-scale systems, multicores are shared-memory

Which is Best Communication Model to Support?

Shared-memory
Used in small-scale systems
Easier to program for dynamic data structures
Lower overhead communication for small data
Implicit movement of data with caching
Hard to build?

Message-passing
Communication explicit harder to program?
Larger overheads in communication OS intervention?
Easier to build?

Shared-Memory Architecture

For now, assume interconnect is a bus – centralized architecture

The model

INTERCONNECT

PROC PROC PROC

MEMORY

Centralized Shared-Memory Architecture

PROC PROC PROC

MEMORY

BUS

Centralized Shared-Memory Architecture (Cont.)

For higher bandwidth (throughput)

For lower latency

Problem?

Centralized Shared-Memory Architecture (Cont.)**

For higher bandwidth (throughput)

For lower latency

Problem?

PROC

MEMORY

BUS

PROC PROC

MEMORY MEMORY

For higher bandwidth (throughput)

For lower latency

Problem?

Centralized Shared-Memory Architecture (Cont.)**

PROC

MEMORY

BUS

PROC PROC

MEMORY MEMORY

PROC

MEMORY

BUS

PROC PROC

MEMORY MEMORY

CACHE CACHE CACHE

Cache Coherence Problem

BUS

PROC 2PROC 1 PROC n

CACHE

MEMORY MEMORYA

A

BUS

PROC 2PROC 1 PROC n

CACHE

MEMORY MEMORYA

A

Cache Coherence Solutions

Snooping

Problem with centralized architecture

MSI Coherence Protocol

MSI Coherence Protocol

Distributed Shared-Memory (DSM) Architecture

Use a higher bandwidth interconnection network

Uniform memory access architecture (UMA)

PROC 2PROC 1 PROC n

CACHE

MEMORY MEMORY

CACHE CACHE

MEMORY

GENERAL INTERCONNECT

Distributed Shared-Memory (DSM) - Cont.

For lower latency: Non-Uniform Memory Access architecture (NUMA)

Distributed Shared-Memory (DSM) -- Cont.**

For lower latency: Non-Uniform Memory Access architecture (NUMA)

SWITCH/NETWORK

PROC

MEM

CACHE

PROC

MEM

CACHE

PROC

MEM

CACHE

Non-Bus Interconnection Networks

Example interconnection networks

Distributed Shared-Memory - Coherence Problem
Directory scheme

Level of indirection!

SWITCH/NETWORK

PROC

MEM

CACHE

PROC

MEM

CACHE

PROC

MEM

CACHE

Distributed Shared-Memory - Coherence Problem**

Directory scheme

Level of indirection!

SWITCH/NETWORK

PROC

MEM

CACHE

PROC

MEM

CACHE

PROC

MEM

CACHEDIR DIR DIR

Parallel Programming Example

Add two matrices: C = A + B

Sequential Program
main(argc, argv)
int argc; char *argv;
{

Read(A);
Read(B);
for (i = 0; i ! N; i++)

for (j = 0; j ! N; j++)
C[i,j] = A[i,j] + B[i,j];

Print(C);
}

Parallel Program Example (Cont.)

Parallel Program Example (Cont.)**
main(argc, argv)
int argc; char *argv;
{

Read(A);
Read(B);
for (p = 1; p = number—of—processors; p++)

create—thread(p, start—procedure);
start—procedure();
wait—for—all—threads—to—be—done();
Print(C);

}

start—procedure()
{

for (i = my—rows—begin; i != my—rows—end; i++)
for (j = 0, j ! N, j++)

C[i,j] = A[i,j] + B[i,j]
indicate—done();

}

The Parallel Programming Process

The Parallel Programming Process**

Break up computation into tasks

Break up data into chunks
Necessary for message passing machines

Introduce synchronization for correctness

Synchronization

Communication – Exchange data
Synchronization – Exchange data to order events

Mutual exclusion or atomicity
Event ordering or Producer/consumer

Point to Point
Flags

Global
Barriers

Mutual Exclusion

Example
Each processor needs to occasionally update a counter

Processor 1 Processor 2

Load reg1, Counter Load reg2, Counter
reg1 = reg1 + tmp1 reg2 = reg2 + tmp2
Store Counter, reg1 Store Counter, reg2

Mutual Exclusion Primitives

Hardware instructions
Test&Set

Atomically tests for 0 and sets to 1
Unset is simply a store of 0

while (Test&Set(L) != 0) {;}
Critical Section
Unset(L)

Problem?

Mutual Exclusion Primitives**

Hardware instructions
Test&Set

Atomically tests for 0 and sets to 1
Unset is simply a store of 0

while (Test&Set(L) != 0) {;}
Critical Section
Unset(L)

Problem - Traffic

Mutual Exclusion Primitives – Alternative?

Test&Test&Set

Mutual Exclusion Primitives – Alternative?**

Test&Test&Set

A: while (L != 0) {;}
if (Test&Set(L) == 0) {

critical Section
}
else go to loop A

Problem?

Mutual Exclusion Primitives – Alternative?**

Test&Test&Set

A: while (L != 0) {;}
if (Test&Set(L) == 0) {

critical Section
}
else go to loop A

Problem
Traffic on lock release
What if processor swapped out while holding lock?

Mutual Exclusion Primitives – Fetch&Add
Fetch&Add(var, data)

{ /* atomic action */
temp = var
var = temp + data
}
return temp

E.g., let X = 57
P1: a = Fetch&Add(X,3)
P2: b = Fetch&Add(X,5)

If P1 before P2, ?
If P2 before P1, ?
If P1, P2 concurrent ?

Point to Point Event Ordering

Example
Producer wants to indicate to consumer that data is ready

Processor 1 Processor 2
A[1] = … … = A[1]
A[2] = … … = A[2]

. .

. .
A[n] = … … = A[n]

Point to Point Event Ordering – Flags**
Example

Producer wants to indicate to consumer that data is ready

Processor 1 Processor 2
while (Flag != 1) {;}

A[1] = … … = A[1]
A[2] = … … = A[2]

. .

. .
A[n] = … … = A[n]

Flag = 1

Global Event Ordering – Barriers

Example
All processors produce some data
Want to tell all processors that it is ready
In next phase, all processors consume data produced previously

Use barriers

Implementing Barriers**

Simple barrier

temp = Fetch&Inc(count)
while (count != N) {;}

Problem:

Implementing Barriers**

Simple barrier

temp = Fetch&Inc(count)
while (count != N) {;}

Problem: Cannot use it again

Implementing Barriers**

local_flag = !local_flag
if Fetch&Inc(count) == N {

count = 1
flag = local_flag

}
while (flag != local_flag) {;}

