
Data Parallel Architectures - SIMD
Motivation
Vectors
SIMD (multimedia) instructions (brief recap)
GPUs (project presentations)



Motivation
Recall SIMD from Chapter 5



Copyright © 2011, Elsevier Inc. All rights Reserved.

Figure 4.2 The basic structure of a vector architecture, VMIPS. This processor has a scalar architecture just like MIPS. There are also 
eight 64-element vector registers, and all the functional units are vector functional units. This chapter defines special vector instructions 
for both arithmetic and memory accesses. The figure shows vector units for logical and integer operations so that VMIPS looks like a 
standard vector processor that usually includes these units; however, we will not be discussing these units. The vector and scalar 
registers have a significant number of read and write ports to allow multiple simultaneous vector operations. A set of crossbar switches 
(thick gray lines) connects these ports to the inputs and outputs of the vector functional units. 

Vector Processors

We use VMIPS 
from an older 
edition. Book uses 
very similar RV64V, 
but it was still in 
transition at time of 
printing



What are Vector Instructions?
A vector is a one-dimensional array of numbers 

float A[64], B[64], C[64]

Original motivation: Many scientific programs operate on vectors of 
floating point data 

for (i=0; i<64; i++)
C[i] = A[i] + B[i] 

Multimedia, graphics, neural networks, other emerging apps also 
operate on vectors of data

A vector instruction performs an operation on each vector element 
ADDVV C, A, B



Why Vector Instructions?
Want deeper pipelines, BUT 

Interlock logic complexity grows 
Stalls due to data hazards increase 
Stalls due to control hazards increase 
Instruction issue bottleneck
Stalls due to cache misses 

Vector instructions allow deeper pipelines 
No intra-vector interlock logic 
No intra-vector data hazards 
“Inner” loop control hazards eliminated 
Need not issue multiple instrns per cycle (but many current proc do)
Vectors have known memory access patterns



VMIPS Architecture
Strongly based on CRAY
Vector-Register architecture 

Load/store architecture
All vector operations use registers (except load/store) 
Optimized for small vectors 

Extend MIPS with vector instructions 
Scalar unit 
Eight vector registers (V0-V7): each is 64 elements, 64 bits wide

Five Vector Functional Units 
FP+, FP*, FP/, integer & logical 
Fully pipelined

Vector Load/Store Units 
Fully pipelined



VMIPS Architecture, cont.
Vector-Vector Instructions 

Operate on two vectors 
Produce a third vector 
for (i=0; i<64; i++)

V1[i] = V2[i] + V3[i] 

ADDVV.D V1, V2, V3

Vector-Scalar Instructions 
Operate on one vector, one scalar 
Produce a third vector 
for (i=0; i<64; i++)

V1[i] = F0 + V3[i] 

ADDVS.D V1, V3, F0



VMIPS Architecture, cont.
Vector Load/Store Instructions 

Load/Store a vector from memory into a vector register 
Operates on contiguous addresses 

LV V1, R1 ; V1[i] = M[R1 + i] 
SV R1, V1 ; M[R1 + i] = V1[i]

Load/Store Vector with Stride 
Vectors not always contiguous in memory 
Add non-unit stride on each access 

LVWS V1, (R1, R2) ; V1[i] = M[R1 + i*R2] 
SVWS (R1, R2), V1 ; M[R1 + i*R2] = V1[i] 

Vector Load/Store Indexed 
Indirect accesses through an index vector 

LVI V1, (R1+V2) ; V1[i] = M[R1 + V2[i]] 
SVI (R1+V2), V1 ; M[R1 + V2[i]] = V1[i]



VMIPS Architecture, cont.
Double-precision A*X Plus Y (DAXPY): 

for (i=0; i<64; i++)
Y[i] = a * X[i] + Y[i] 

L.D      F0, a 
LV       V1, Rx 
MULVS.D  V2, V1, F0 
LV       V3, Ry 
ADDVV.D  V4, V2, V3 
SV       Ry, V4

6 instructions instead of 600!
Remember: MIPS means “Meaningless Indicator of Performance” 



Not All Vectors are 64 Elements Long
Vector length register (VLR) 

Controls length of vector operations 
0 < VLR £ MVL = 64 
for (i=0; i<100; i++)

X[i] = a * X[i] 

LD F0, a 
MTC1 VLR, 36 /* 100 - 64 */ 
LV V1, Rx 
MULVS V2, V1, F0
SV Rx, V2 
ADD Rx, Rx, 36 
MTCl VLR, 64 
LV V1, Rx 
MULVS V2, V1, F0 
SV Rx, V2 

Strip Mining for i = 1, n



Strip Mining
General case: Parameter n 

for (i=0; i<n; i++)
X[i] = a * X[i] 

Strip-mined version (pseudocode) 
low = 0 
VL = (n mod MVL) /* Odd sized piece */ 
for (j = 0; j < (n / MVL); j++) { /* Outer loop */ 

for (i = low, i < low+VL1; i++) /* Length */ 
X[i] = a * X[i] 

low = low + VL /* Base of next chunk */ 
VL = MVL /* Reset length to MAX */ 

}



Old Vector Machines Did Not Have Caches
Caches 

Vectorizable codes often have poor locality 
Large vectors don't fit in cache 
Large vectors flush other data from the cache 

Cannot exploit known access patterns 
Unpredictability hurts 

Degrades cycle time 
Vector Registers (like all registers) 

Very fast 
Predictable 
Short id 
Multiple ports easier



More Options
Use vector mask register for vectorizing 

for (i=0; i<64; i++) 
if (A[i] != 0.0) then A[i] = A[i]+ 5.0

Use chaining (vector register bypass) for RAWs 
MULTV V1, , 
ADDV , V1, 

Use gather/scatter for sparse matrices 
for (i=0; i<64; i++)

A[K[i]] = A[K[i]] + C[M[i]] 

Use multiple lanes for parallelism: implementation
FINAL WARNING: Make scalar unit fast! 

Amdahl's law 
CRAY1 was the fastest scalar computer



Compiler Technology
Must detect vectorizable loops 
Must detect dependences that prevent vectorization 

Data, anti, output dependences 
Only data (or true) dependences important, others can be 

eliminated with renaming



SIMD (Multimedia) Instructions
Multimedia data derived from sampling analog input

Correctness dictated by human perception
Smaller data types - 8-bit, 16-bit

Compare with 32, 64, 128 bit processor data paths
Significant levels of data parallelism

Large collection of small data elements
Identical processing of similar elements

e.g. Image Addition 
For I = 1 to 1024

For J = 1 to 1024
dest[I,J] 

= src1[I,J]+src2[I,J]



Packed Data Types

16 bits

Operand 2

Result

+ ++ +

= = = =

64 bits

Operand 1

4 operations in 1 cycle
SPEEDUP: 4X??

Operand 2

Result

+

=

64 bits

Operand 1

16 bits

48 bits are wasted!

Can we use them in any way?



Other Extensions
Saturation arithmetic

Example: image addition

Saturation ensures clamping of values

For I = 1 to 1024
For J = 1 to 1024

dest[I,J] 
= src1[I,J]+src2[I,J]

If (dest > 255)
dest = 255;

If (dest < 0) 
dest = 0;

+

=



Other Extensions (Cont.)
Sub-word Rearrangement 

How do we go from unpacked data types to packed data types?
Provide ISA support for pack, unpack, expand, align, …

Support for other types of sub-word rearrangement
Shift, rotate, permute, ...
E.g., for FFT butterfly algorithm

Many others
Conditional execution, memory instructions, special-purpose 

instructions, …

Most processors today support such instructions
ML acceleration with quantization is recent example



Example: Intel MMX ISA Extensions (~1996)

Arithmetic PADD[B,W,D],PADDS[B,W],PADDUS[B,W],
PSUB[B,W,D],PSUBS[B,W,D],
PSUBUS[B,W], PMULHW, PMULLW,
PMADDWD

Comparison PCMPEQ[B,W,D],PCMPGT[B,W,D]
Conversion PACKUSWB,PACKSS[WB,DW],PUNPCKH[B

W,WD,DQ], PUNPCKL[BW,WD,DQ]
Logical PAND, PANDN, POR,PXOR
Shift PSLL[W,D,Q], PSRL[W,D,Q], PSRA[W,D]
FP and MMX state mgt EMMS
Data Transfer MOV[D,Q]

57 new instructions
Use FP registers, 32-bit data path, SIMD, saturation, ...



Example: Intel SSE ISA Extensions (~1999)

70 instructions 
Separate register state, 128-bit data path

Data movement MOV, MOVUPS, MOVLPS, MOVLHPS, 
MOVHPS, MOVHLPS, MOVMSKPS, MOVSS 

Shuffle SHUFPS, UNPCKHPS, UNPCKLPS 
State FXSAVE, FXRSTOR, STMXCSR, LDMXCSR 

MMX Tech 
Enhancements 

PINSRW, PEXTRW, PMULXHU, PSHUFW, 
PMOVMSKRB, PSAD, PAVG, PMIN, PMAX 

Streaming/prefetching MASKMOVQ, MOVNTQ, MOVTPS, 
PREFETCH, SFENCE 

Conversions CVTSS2SI, CVTTSS2SI, CVTSI2SS, 
CVTPI2PS, CVTPS2PI, CVTTPS2PI  

 

 



Later Versions
2001/04/07: SSE2/3/4: double precision floating point, instructions 

to accelerate specific functions
2010: Advanced vector extensions (AVX)

256 bits, three operands
Relaxed alignment
Fused  multiply-add (FMA) (A=A*B+C)

AVX-512: 512 bits 
1024 bits, …



Graphical Processing Units (GPUs)
Graphics accelerators

Heterogeneous computing: Host CPU + GPU (device)
Great for graphics: exploit lots of data parallelism
Can we use GPUs for other computing?

Multiple forms of parallelism
MIMD, SIMD, ILP, Multithreading

How to program?
2007: Nvidia developed a C like language

CUDA: Compute Unified Device Architetcture
2009: Khronos group released OpenCL



Nvidia GPUs + CUDA
Programming Model

Single Instruction Multiple Thread (SIMT)
CUDA thread is the unifying parallelism construct

Thread -> (Warp) -> Thread block -> Streaming multiprocessor (SM)
Each SM executes a thread block
Computation structured in a 2D grid of thread blocks and threads

functionName<<dimGrid, dimBlock>>(parameter list)
Threads use blockIdx (which block), threadIdx (which thread in block), 

blockDim (dimension of block) to determine which element to 
compute on

Originally, separate memories for CPU/GPU: host vs. device or global
Device/global memory accessible by all SMs
Recent trend – shared virtual memory, integrated CPU+GPU



DAXPY
for (int i=0; i<n; i++)

y[i] = a*x[i] + y[i]
CUDA: 
E.g., n threads, one per vector element, 256 threads per thread block

_host_
int nblocks = (n+255)/256
daxpy<<<nblocks,256>>>(n,2.0,x,y)

_device_
void daxpy(int n, double a, double *x, double *y)
{

int i = (blockIdx * blockDim) + threadIdx;
if (i < n) y[i] = a*x[i] + y[i]

}


