
Chapter 2: Memory Hierarchy Design – Part 2

Introduction (Section 2.1, Appendix B)

Caches
Review of basics (Section 2.1, Appendix B)
Advanced methods (Section 2.3)

Main Memory

Virtual Memory

Fundamental Cache Parameters

Cache Size
How large should the cache be?

Block Size
What is the smallest unit represented in the cache?

Associativity
How many entries must be searched for a given address?

Cache Size

Cache size is the total capacity of the cache
Bigger caches exploit temporal locality better than smaller

caches
But are not always better
Why?

Block Size

Block (line) size is the data size that is both
(a) associated with an address tag, and
(b) transferred to/from memory
Advanced caches allow different (a) & (b)

Problem with too small blocks

Problem with large blocks

Set Associativity
Partition cache block frames & memory blocks in equivalence

classes (usually w/ bit selection)

Number of sets, s, is the number of classes

Associativity (set size), n, is the number of block frames per class

Number of block frames in the cache is s ´ n

Cache Lookup (assuming read hit)
Select set
Associatively compare stored tags to incoming tag
Route data to processor

Associativity, cont.

Typical values for associativity
1 -- direct-mapped
n = 2, 4, 8, 16 -- n-way set-associative
All blocks – fully-associative

Larger associativity

Smaller associativity

Advanced Cache Design (Section 2.3)

Evaluation Methods

Two Levels of Cache

Getting Benefits of Associativity without Penalizing Hit Time

Reducing Miss Cost to Processor

Lockup-Free Caches

Beyond Simple Blocks

Prefetching

Pipelining and Banking for Higher Bandwidth

Software Restructuring

Handling Writes

Evaluation Methods

?

?

?

?

Method 1: Hardware Counters

Advantages
+
+

Disadvantages
-
-

Method 2: Analytic Models

Mathematical expressions

Advantages
+
+

Disadvantages
-
-

Method 3: Simulation

Software model of the system driven by model of program
Can be at different levels of abstraction

Functional vs. timing
Trace-driven vs. execution-driven

Advantages

Disadvantages

Trace-Driven Simulation
Step 1:

Execute and Trace
Program + Input Data Trace File

Trace files may have only memory references or all instructions

Step 2:
Trace File + Input Cache Parameters

Run simulator

Get miss ratio, tavg, execution time, etc.

Repeat Step 2 as often as desired

Trace-Driven Simulation: Limitation?

Average Memory Access Time and Performance

What About Non-Performance Metrics?

Area, power, detailed timing
CACTI for caches
McPAT: microarchitecture model for full multicore

© 2019 Elsevier Inc. All rights reserved. 16

Figure 2.8 Relative access times generally increase as cache size and associativity are increased. These data come from the
CACTI model 6.5 by Tarjan et al. (2005). The data assume typical embedded SRAM technology, a single bank, and 64-byte blocks.
The assumptions about cache layout and the complex trade-offs between interconnect delays (that depend on the size of a cache block
being accessed) and the cost of tag checks and multiplexing lead to results that are occasionally surprising, such as the lower access
time for a 64 KiB with two-way set associativity versus direct mapping. Similarly, the results with eight-way set associativity generate
unusual behavior as cache size is increased. Because such observations are highly dependent on technology and detailed design
assumptions, tools such as CACTI serve to reduce the search space. These results are relative; nonetheless, they are likely to shift as
we move to more recent and denser semiconductor technologies.

Timing Data from CACTI

Y-axis unit
incorrect

© 2019 Elsevier Inc. All rights reserved. 17

Figure 2.9 Energy consumption per read increases as cache size and associativity are increased. As in the previous figure,
CACTI is used for the modeling with the same technology parameters. The large penalty for eight-way set associative caches is due
to the cost of reading out eight tags and the corresponding data in parallel.

Energy Data from CACTI

Multilevel Caches

Processor

L1 Inst L1 Data

L2

Main memory

Why Multilevel Caches?

Multilevel Inclusion

Multilevel inclusion holds if L2 cache always contains superset of
data in L1 cache(s)

Filter coherence traffic
Makes L1 writes simpler

Example: Local LRU not sufficient
Assume that L1 and L2 hold two and three blocks and both use

local LRU
Processor references: 1, 2, 1, 3, 1, 4
Final contents of L1: 1, 4
L1 misses: 1, 2, 3, 4
Final contents of L2: 2, 3, 4, but not 1

Multilevel Inclusion, cont.

Multilevel inclusion takes effort to maintain
(Typically L1/L2 cache line sizes are different)
Make L2 cache have bits or pointers giving L1 contents
Invalidate from L1 before replacing block from L2
Number of pointers per L2 block is (L2 blocksize / L1 blocksize)

Multilevel Exclusion

What if the L2 cache is only slightly larger than L1?
Multilevel exclusion => A line in L1 is never in L2 (AMD Athlon)

Level Two Cache Design
L1 cache design similar to single-level cache design when main memories

were ``faster''
Apply previous experience to L2 cache design?
What is ``miss ratio''?

Global -- L2 misses after L1 / references
Local -- L2 misses after L1 / L1 misses

BUT: L2 caches bigger than L1 experience (several MB)
BUT: L2 affects miss penalty, L1 affects clock rate

Benefits of Associativity W/O Paying Hit Time

Victim Caches
Pseudo-Associative Caches
Way Prediction

Victim Cache

Add a small fully associative cache next to main cache
On a miss in main cache

Pseudo-Associative Cache

To determine where block is placed
Check one block frame as in direct mapped cache, but
If miss, check another block frame

E.g., frame with inverted MSB of index bit
Called a pseudo-set

Hit in first frame is fast
Placement of data

Put most often referenced data in “first” block frame and the
other in the “second” frame of pseudo-set

Way Prediction

Keep extra bits in cache to predict the “way” of the next access
Access predicted way first
If miss, access other ways like in set associative caches
Fast hit when prediction is correct

Reducing Miss Cost

If main memory takes M cycles before delivering two words per
cycle, we previously assumed

tmemory = taccess + B ´ ttransfer = M+ B ´ 1/2
where B is block size in words

How can we do better?

Reducing Miss Cost, cont.

tmemory = taccess + B ´ ttransfer = M+ B ´ 1/2
Þ the whole block is loaded before data returned

If main memory returned the reference first (requested-word-first)
and the cache returned it to the processor before loading it into
the cache data array (fetch-bypass, early restart),

tmemory = taccess + W ´ ttransfer = M+ W ´ 1/2
where W is memory bus width in words

BUT ...

Reducing Miss Cost, cont.

What if processor references unloaded word in block being loaded?

Why not generalize?
Handle other references that hit before any part of block is

back?
Handle other references to other blocks that miss?

Called ``lockupfree'' or ``nonblocking'' cache

Lockup-Free Caches

Normal cache stalls while a miss is pending

Lockup-Free Caches
(a) Handle hits while first miss is pending
(b) Handle hits & misses until K misses are pending

Potential benefit
(a) Overlap misses with useful work & hits
(b) Also overlap misses with each other

Only makes sense if

Lockup-Free Caches, cont.

Key implementation problems
(1) Handling reads to pending miss
(2) Handling writes to pending miss
(3) Keep multiple requests straight

MSHRs -- miss status holding registers

What state do we need in MSHR?

Beyond Simple Blocks

Break block size into
Address block associated with tag
Transfer block transferred to/from memory

Larger address blocks
Decrease address tag overhead
But allow fewer blocks to be resident

Larger transfer blocks
Exploit spatial locality
Amortize memory latency
But take longer to load
But replace more data already cached
But cause unnecessary traffic

Beyond Simple Blocks, cont.

Address block size > transfer block size
Usually implies valid (& dirty) bit per transfer block
Used in 360/85 to reduce tag comparison logic

1K byte sectors with 64 byte subblocks

Transfer block size > address block size
``Prefetch on miss''
E.g., early MIPS R2000 board

Prefetching

Prefetch instructions/data before processor requests them

Even ``demand fetching'' prefetches other words in the referenced
block

Prefetching is useless unless a prefetch ``costs'' less than demand
miss

Prefetches should
???

Prefetching Policy

Policy
What to prefetch?
When to prefetch?

Simplest Policy
?

Enhancements

Software Prefetching

Use compiler to
Prefetch early

E.g., one loop iteration ahead
Prefetch accurately

Software Prefetching Example

for (i = 0; i < N-1; i++) {
… = A[i]
/* computation */

}
Assume each iteration takes 10 cycles with a hit,

memory latency is 100 cycles

Software Prefetching Example
for (i = 0; i < N-1; i++) {

… = A[i]
/* computation */

}
Assume each iteration takes 10 cycles with a hit,

memory latency is 100 cycles, cache block is two words
Changes?
for (i = 0; i < N-1; i++) {

prefetch(A[i+10])
… = A[i]
/* computation */

}

Software Restructuring

Restructure so that operations on a cache block done before going
to next block

do i = 1 to rows
do j = 1 to cols

sum = sum + x[i,j]

What is the cache behavior?

Software Restructuring (Cont.)

do i = 1 to rows
do j = 1 to cols

sum = sum + x[i,j]

Column major order in memory

Code access pattern

Better code??

Called loop interchange
Many such optimizations possible (merging, fusion, blocking)

Pipelining and Banking for Higher Bandwidth

Pipelining
Old: cache access = 1 cycle
New: 1 cycle caches would slow the whole processor

Pipeline: cache hit may take 4 cycles (affects misspeculation
penalty)

Multiple banks
Block based interleaving allows multiple accesses per cycle

Handling Writes - Pipelining
Writing into a writeback cache

Read tags (1 cycle)
Write data (1 cycle)

Key observation
Data RAMs unused during tag read
Could complete a previous write

Add a special ``Cache Write Buffer'' (CWB)
During tag check, write data and address to CWB
If miss, handle in normal fashion
If hit, written data stays in CWB
When data RAMs are free (e.g., next write) store contents of

CWB in data RAMs.
Cache reads must check CWB (bypass)

Used in VAX 8800

Handling Writes - Write Buffers
Writethrough caches are simple

But 5-15% of all instructions are stores
Need to buffer writes to memory

Write buffer
Write result in buffer
Buffer writes results to memory
Stall only when buffer is full
Can combine writes to same line (Coalescing write buffer - Alpha)
Allow reads to pass writes

What about data dependencies?
Could stall (slow)
Check address and bypass result

Handling Writes - Writeback Buffers

Writeback caches need buffers too
10-20% of all blocks are written back
10-20% increase in miss penalty without buffer

On a miss
Initiate fetch for requested block
Copy dirty block into writeback buffer
Copy requested block into cache, resume CPU
Now write dirty block back to memory

