
Chapter 2: Memory Hierarchy Design – Part 2

Introduction (Section 2.1, Appendix B)

Caches 
Review of basics (Section 2.1, Appendix B)
Advanced methods (Section 2.3)

Main Memory

Virtual Memory



Fundamental Cache Parameters 

Cache Size 
How large should the cache be? 

Block Size 
What is the smallest unit represented in the cache? 

Associativity 
How many entries must be searched for a given address? 



Cache Size 

Cache size is the total capacity of the cache 
Bigger caches exploit temporal locality better than smaller 

caches 
But are not always better 
Why? 



Block Size

Block (line) size is the data size that is both 
(a) associated with an address tag, and 
(b) transferred to/from memory 
Advanced caches allow different (a) & (b) 

Problem with too small blocks 

Problem with large blocks 



Set Associativity 
Partition cache block frames & memory blocks in equivalence 

classes (usually w/ bit selection) 

Number of sets, s, is the number of classes 

Associativity (set size), n, is the number of block frames per class 

Number of block frames in the cache is s ´ n 

Cache Lookup (assuming read hit) 
Select set 
Associatively compare stored tags to incoming tag 
Route data to processor 



Associativity, cont. 

Typical values for associativity 
1 -- direct-mapped 
n = 2, 4, 8, 16 -- n-way set-associative 
All blocks – fully-associative 

Larger associativity 

Smaller associativity



Advanced Cache Design (Section 2.3) 

Evaluation Methods 

Two Levels of Cache 

Getting Benefits of Associativity without Penalizing Hit Time

Reducing Miss Cost to Processor 

Lockup-Free Caches 

Beyond Simple Blocks 

Prefetching 

Pipelining and Banking for Higher Bandwidth

Software Restructuring 

Handling Writes 



Evaluation Methods 

?

?

?

?



Method 1: Hardware Counters

Advantages 
+
+

Disadvantages 
-
-



Method 2: Analytic Models

Mathematical expressions

Advantages 
+
+

Disadvantages 
-
-



Method 3: Simulation

Software model of the system driven by model of program
Can be at different levels of abstraction

Functional vs. timing
Trace-driven vs. execution-driven

Advantages

Disadvantages



Trace-Driven Simulation
Step 1: 

Execute and Trace
Program + Input Data                                           Trace File 

Trace files may have only memory references or all instructions

Step 2: 
Trace File + Input Cache Parameters 

Run simulator 

Get miss ratio, tavg, execution time, etc.

Repeat Step 2 as often as desired 



Trace-Driven Simulation: Limitation? 



Average Memory Access Time and Performance



What About Non-Performance Metrics?

Area, power, detailed timing
CACTI for caches
McPAT: microarchitecture model for full multicore
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Figure 2.8 Relative access times generally increase as cache size and associativity are increased. These data come from the 
CACTI model 6.5 by Tarjan et al. (2005). The data assume typical embedded SRAM technology, a single bank, and 64-byte blocks. 
The assumptions about cache layout and the complex trade-offs between interconnect delays (that depend on the size of a cache block 
being accessed) and the cost of tag checks and multiplexing lead to results that are occasionally surprising, such as the lower access 
time for a 64 KiB with two-way set associativity versus direct mapping. Similarly, the results with eight-way set associativity generate 
unusual behavior as cache size is increased. Because such observations are highly dependent on technology and detailed design
assumptions, tools such as CACTI serve to reduce the search space. These results are relative; nonetheless, they are likely to shift as 
we move to more recent and denser semiconductor technologies.

Timing Data from CACTI

Y-axis unit 
incorrect
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Figure 2.9 Energy consumption per read increases as cache size and associativity are increased. As in the previous figure, 
CACTI is used for the modeling with the same technology parameters. The large penalty for eight-way set associative caches is due 
to the cost of reading out eight tags and the corresponding data in parallel.

Energy Data from CACTI



Multilevel Caches

Processor

L1 Inst L1 Data

L2

Main memory



Why Multilevel Caches?



Multilevel Inclusion

Multilevel inclusion holds if L2 cache always contains superset of 
data in L1 cache(s) 

Filter coherence traffic 
Makes L1 writes simpler 

Example: Local LRU not sufficient 
Assume that L1 and L2 hold two and three blocks and both use 

local LRU 
Processor references: 1, 2, 1, 3, 1, 4 
Final contents of L1: 1, 4 
L1 misses: 1, 2, 3, 4 
Final contents of L2: 2, 3, 4, but not 1 



Multilevel Inclusion, cont. 

Multilevel inclusion takes effort to maintain 
(Typically L1/L2 cache line sizes are different) 
Make L2 cache have bits or pointers giving L1 contents 
Invalidate from L1 before replacing block from L2 
Number of pointers per L2 block is (L2 blocksize / L1 blocksize) 



Multilevel Exclusion

What if the L2 cache is only slightly larger than L1?
Multilevel exclusion => A line in L1 is never in L2 (AMD Athlon)



Level Two Cache Design 
L1 cache design similar to single-level cache design when main memories 

were ``faster'' 
Apply previous experience to L2 cache design? 
What is ``miss ratio''? 

Global -- L2 misses after L1 / references 
Local -- L2 misses after L1 / L1 misses 

BUT: L2 caches bigger than L1 experience (several MB) 
BUT: L2 affects miss penalty, L1 affects clock rate 



Benefits of Associativity W/O Paying Hit Time

Victim Caches
Pseudo-Associative Caches
Way Prediction



Victim Cache

Add a small fully associative cache next to main cache
On a miss in main cache



Pseudo-Associative Cache

To determine where block is placed
Check one block frame as in direct mapped cache, but
If miss, check another block frame 

E.g., frame with inverted MSB of index bit
Called a pseudo-set

Hit in first frame is fast
Placement of data

Put most often referenced data in “first” block frame and the 
other in the “second” frame of pseudo-set



Way Prediction

Keep extra bits in cache to predict the “way” of the next access
Access predicted way first
If miss, access other ways like in set associative caches
Fast hit when prediction is correct



Reducing Miss Cost 

If main memory takes M cycles before delivering two words per 
cycle, we previously assumed 

tmemory = taccess + B ´ ttransfer = M+ B ´ 1/2 
where B is block size in words 

How can we do better? 



Reducing Miss Cost, cont. 

tmemory = taccess + B ´ ttransfer = M+ B ´ 1/2
Þ the whole block is loaded before data returned 

If main memory returned the reference first (requested-word-first) 
and the cache returned it to the processor before loading it into 
the cache data array (fetch-bypass, early restart), 

tmemory = taccess + W ´ ttransfer = M+ W ´ 1/2
where W is memory bus width in words 

BUT ... 



Reducing Miss Cost, cont. 

What if processor references unloaded word in block being loaded? 

Why not generalize? 
Handle other references that hit before any part of block is 

back? 
Handle other references to other blocks that miss? 

Called ``lockupfree'' or ``nonblocking'' cache 



Lockup-Free Caches 

Normal cache stalls while a miss is pending 

Lockup-Free Caches 
(a) Handle hits while first miss is pending 
(b) Handle hits & misses until K misses are pending 

Potential benefit 
(a) Overlap misses with useful work & hits 
(b) Also overlap misses with each other 

Only makes sense if



Lockup-Free Caches, cont. 

Key implementation problems 
(1) Handling reads to pending miss 
(2) Handling writes to pending miss 
(3) Keep multiple requests straight 

MSHRs -- miss status holding registers 

What state do we need in MSHR? 



Beyond Simple Blocks

Break block size into 
Address block associated with tag 
Transfer block transferred to/from memory 

Larger address blocks 
Decrease address tag overhead 
But allow fewer blocks to be resident 

Larger transfer blocks 
Exploit spatial locality 
Amortize memory latency 
But take longer to load 
But replace more data already cached 
But cause unnecessary traffic 



Beyond Simple Blocks, cont.

Address block size > transfer block size 
Usually implies valid (& dirty) bit per transfer block 
Used in 360/85 to reduce tag comparison logic 

1K byte sectors with 64 byte subblocks 

Transfer block size > address block size 
``Prefetch on miss'' 
E.g., early MIPS R2000 board 



Prefetching

Prefetch instructions/data before processor requests them 

Even ``demand fetching'' prefetches other words in the referenced 
block 

Prefetching is useless unless a prefetch ``costs'' less than demand 
miss 

Prefetches should 
??? 



Prefetching Policy 

Policy 
What to prefetch? 
When to prefetch? 

Simplest Policy
?

Enhancements 



Software Prefetching 

Use compiler to 
Prefetch early 

E.g., one loop iteration ahead 
Prefetch accurately 



Software Prefetching Example

for (i = 0; i < N-1; i++) {
… = A[i]
/* computation */

}
Assume each iteration takes 10 cycles with a hit, 

memory latency is 100 cycles



Software Prefetching Example
for (i = 0; i < N-1; i++) {

… = A[i]
/* computation */

}
Assume each iteration takes 10 cycles with a hit, 

memory latency is 100 cycles, cache block is two words
Changes?
for (i = 0; i < N-1; i++) {

prefetch(A[i+10])
… = A[i]
/* computation */

}



Software Restructuring 

Restructure so that operations on a cache block done before going 
to next block 

do i = 1 to rows 
do j = 1 to cols 

sum = sum + x[i,j]

What is the cache behavior? 



Software Restructuring (Cont.) 

do i = 1 to rows 
do j = 1 to cols 

sum = sum + x[i,j] 

Column major order in memory 

Code access pattern 

Better code??

Called loop interchange 
Many such optimizations possible (merging, fusion, blocking) 



Pipelining and Banking for Higher Bandwidth

Pipelining
Old: cache access = 1 cycle
New: 1 cycle caches would slow the whole processor

Pipeline: cache hit may take 4 cycles (affects misspeculation 
penalty)

Multiple banks
Block based interleaving allows multiple accesses per cycle



Handling Writes - Pipelining
Writing into a writeback cache 

Read tags (1 cycle) 
Write data (1 cycle) 

Key observation 
Data RAMs unused during tag read 
Could complete a previous write 

Add a special ``Cache Write Buffer'' (CWB) 
During tag check, write data and address to CWB 
If miss, handle in normal fashion 
If hit, written data stays in CWB 
When data RAMs are free (e.g., next write) store contents of 

CWB in data RAMs. 
Cache reads must check CWB (bypass) 

Used in VAX 8800 



Handling Writes - Write Buffers 
Writethrough caches are simple 

But 5-15% of all instructions are stores 
Need to buffer writes to memory 

Write buffer 
Write result in buffer 
Buffer writes results to memory 
Stall only when buffer is full 
Can combine writes to same line (Coalescing write buffer - Alpha) 
Allow reads to pass writes 

What about data dependencies? 
Could stall (slow) 
Check address and bypass result



Handling Writes - Writeback Buffers

Writeback caches need buffers too 
10-20% of all blocks are written back 
10-20% increase in miss penalty without buffer 

On a miss 
Initiate fetch for requested block 
Copy dirty block into writeback buffer 
Copy requested block into cache, resume CPU 
Now write dirty block back to memory 


