
Appendix C: Pipelining: Basic and Intermediate Concepts

Key ideas and simple pipeline (Section C.1)
Hazards (Sections C.2 and C.3)

Structural hazards
Data hazards
Control hazards

Exceptions (Section C.4)
Multicycle operations (Section C.5)

Pipelining - Key Idea

Ideally,
Timesequential

Pipeline DepthTimepipeline =

Timesequential
Timepipeline

Speedup = = Pipeline Depth

time time

instrnsinstrns

Latency Latency

1/Throughput

1/Throughput

Practical Limit 1 – Unbalanced Stages

Consider an instruction that requires n stages
s1, s2, . . ., sn, taking time t1, t2 , . . ., tn.

Let T = Sti

Without pipelining With an n-stage pipeline

Throughput =

Latency =

Throughput =

Latency =

Speedup

Practical Limit 2 - Overheads

Let D > 0 be extra delay per stage
e.g., latches

D limits the useful depth of a pipeline.

With an n stage pipeline

1
D+ max ti

Throughput = <
n
T

Latency = n ´ (D + max ti) ³ nD + T

Sti
D+ max ti

Speedup = < n

Example

Let t1,2,3 = 8, 12, 10 ns and D = 2 ns

Throughput =
Latency =
Speedup =

Practical Limit 3 - Hazards

If we ignore cycle time differences:

Timesequential
Timepipeline

Pipeline Speedup = = ´
CPIsequential
CPIpipeline

Cycle Timesequential
Cycle Timepipeline

Pipeline Speedup =
CPIideal-pipeline ´ Pipeline Depth

CPIideal-pipeline + Pipeline stall cycles

CPIideal-pipeline =
CPIsequential

Pipeline Depth

Pipelining a Basic RISC ISA

Assumptions:
Only loads and stores affect memory

Base register + immediate offset = effective address
ALU operations

Only access registers
Two sources – two registers, or register and immediate

Branches and jumps
Address = PC + offset
Comparison between a register and zero

The last assumption is different from the 6th edition of the text
and results in a slightly different pipeline. We will discuss

further in class.

A Simple Five Stage RISC Pipeline
Pipeline Stages

IF – Instruction Fetch
ID – Instruction decode, register read, branch computation
EX – Execution and Effective Address
MEM – Memory Access
WB – Writeback

1 2 3 4 5 6 7 8 9
i IF ID EX MEM WB
i+1 IF ID EX MEM WB
i+2 IF ID EX MEM WB
i+3 IF ID EX MEM WB
i+4 IF ID EX MEM WB

Pipelining really isn't this simple

A Naive Pipeline Implementation

Figure C.28
of 5th edition

Pipelining really isn't this simple

Copyright © 2011, Elsevier Inc. All rights Reserved.

Hazards

Hazards

Structural Hazards

Data Hazards

Control Hazards

Handling Hazards

Pipeline interlock logic
Detects hazard and takes appropriate action

Simplest solution: stall
Increases CPI
Decreases performance

Other solutions are harder, but have better performance

Structural Hazards
When two different instructions want to use the same hardware

resource in the same cycle
Stall (cause bubble)

+ Low cost, simple
Increases CPI
Use for rare events
E.g., ??

Duplicate Resource
+ Good performance

Increases cost (and maybe cycle time for interconnect)
Use for cheap resources
E.g., ALU and PC adder

Structural Hazards, cont.

Pipeline Resource
+ Good performance

Often complex to do
Use when simple to do
E.g., write & read registers every cycle

Structural hazards are avoided if each instruction uses a resource
At most once
Always in the same pipeline stage
For one cycle
(Þ no cycle where two instructions use the same resource)

Structural Hazard Example

Loads/stores (MEM) use same memory port as instrn fetches (IF)
30% of all instructions are loads and stores
Assume CPIold is 1.5

1 2 3 4 5 6 7 8 9
i IF ID EX MEM WB <— a load

i+1 IF ID EX MEM WB

i+2 IF ID EX MEM WB

i+3 ** IF ID EX MEM WB

i+4 IF ID EX MEM WB

How much faster could a new machine with two memory ports be?

Data Hazards
When two different instructions use the same location, it must

appear as if instructions execute one at a time and in the
specified order
i ADD r1,r2,
i+1 SUB r2,,r1
i+2 OR r1,--,

Read-After-Write (RAW, data-dependence)
A true dependence
MOST IMPORTANT

Write-After-Read (WAR, anti-dependence)
Write-After-Write (WAW, output-dependence)
NOT: Read-After-Read (RAR)

ADD r1,_,_ IF ID EX MEM WB

SW r1,100(r0) IF ID EX MEM WB

NOT OK!

CORRECT!

LW r1,_,_ IF ID EX MEM WB

SUB _, r1,_ IF ID EX MEM WB

LW r2,100(r0) IF ID EX MEM WB

r1 written

r1 read r1 written

r1 read

memory read

NOT OK!

memory written

Example Read-After-Write Hazards

(Unless LW instrn is at address 100(r0))

SUB _, r1,_ IF ID EX MEM WB

RAW Solutions

Solutions must first detect RAW, and then ...
Stall

(Assumes registers written then read each cycle)
+ Low cost, simple

Increases CPI (plus 2 per stall in 5 stage pipeline)
Use for rare events

ADD r1,_,_ IF ID EX MEM WB

SUB _, r1,_ IF ID stall stall EX MEM WB

r1 written

r1 read

RAW Solutions

Bypass/Forward/ShortCircuit

Use data before it is in register
+ Reduces (avoids) stalls

More complex
Critical for common RAW hazards

ADD r1,_,_ IF ID EX MEM WB

SUB _, r1,_ IF ID EX MEM WB

r1 written

r1 read

data available

data used

Additional hardware
Muxes supply correct result to ALU

Additional control
Interlock logic must control muxes

Bypass, cont.

Figure C.27

5th edition

Copyright © 2011, Elsevier Inc. All rights Reserved.

RAW Solutions, cont.

Hybrid solution sometimes required:

One cycle bubble if result of load used by next instruction
Pipeline scheduling at compile time

Moves instructions to eliminate stalls

LW r1,_,_ IF ID EX MEM WB

SUB _, r1,_ IF ID stall EX MEM WB

r1 written

r1 read

data available

data used

Before: After:
a = b + c; LW Rb,b a = b + c; LW Rb,b

LW Rc,c LW Rc,c
<— stall LW Re,e

ADD Ra,Rb,Rc ADD Ra,Rb,Rc

SW a, Ra

d = e - f; LW Re,e d = e - f; LW Rf,f
LW Rf,f SW a, Ra

<— stall SUB Rd,Re,Rf

SUB Rd,Re, Rf SW d, Rd

SW d, Rd

Pipeline Scheduling Example

Other Data Hazards
i ADD r1,r2,
i+1 SUB r2,,r1
i+2 OR r1,,

Write-After-Read (WAR, anti-dependence)

i MULT , (r2), r1 /* RX mult */
i+1 LW , (r1)+ /* autoincrement */

Write-After-Write (WAW, output-dependence)

i DIVF fr1, , /* slow */
i+1
i+2 ADDF fr1, , /* fast */

Control Hazards

When an instruction affects which instructions are executed next --
branches, jumps, calls

i BEQZ r1,#8

i+1 SUB ,,
. . .

i+8 OR ,,

i+9 ADD ,,

1 2 3 4 5 6 7 8 9

i IF ID EX MEM WB

i+1 IF (aborted)

i+8 IF ID EX MEM WB

i+9 IF ID EX MEM

Handling control hazards is very important

Handling Control Hazards
Branch Prediction

Guess the direction of the branch
Minimize penalty when right
May increase penalty when wrong

Techniques
Static – At compile time
Dynamic – At run time

Static Techniques
Predict NotTaken
Predict Taken
Delayed Branches

Dynamic techniques and more powerful static techniques later…

Handling Control Hazards, cont.
Predict NOT-TAKEN Always

NotTaken:
1 2 3 4 5 6 7 8

i IF ID EX MEM WB
i+1 IF ID EX MEM WB
i+2 IF ID EX MEM WB
i+3 IF ID EX MEM WB

Taken:
1 2 3 4 5 6 7 8

i IF ID EX MEM WB
i+1 IF (aborted)
i+8 IF ID EX MEM WB
i+9 IF ID EX MEM WB

Don't change machine state until branch outcome is known
Basic pipeline: State always changes late (WB)

Handling Control Hazards, cont.

Predict TAKEN Always
1 2 3 4 5 6 7 8

i IF ID EX MEM WB
i+8 ‘IF’ ID EX MEM WB

i+9 IF ID EX MEM WB

i+10 IF ID EX MEM WB

Must know what address to fetch at BEFORE branch is decoded
Not practical for our basic pipeline

Handling Control Hazards, cont.

Delayed branch
Execute next instruction regardless (of whether branch is taken)
What do we execute in the DELAY SLOT?

Delay Slots

Fill from before branch
When:
Helps:

Fill from target
When:

Helps:

Fill from fall through
When:
Helps:

Delay Slots (Cont.)

Cancelling or nullifying branch
Instruction includes direction of prediction
Delay instruction squashed if wrong prediction
Allows second and third case of previous slide to be more

aggressive

Comparison of Branch Schemes

Suppose 14% of all instructions are branches
Suppose 65% of all branches are taken
Suppose 50% of delay slots usefully filled
CPIpenalty = % branches ´

(% Taken ´ Taken-Penalty + % Not-Taken ´ Not-Taken penalty)
Branch
Scheme

Taken
Penalty

Not-Taken
Penalty

CPI
Penalty

Basic Branch 1 1 .14
Not-Taken 1 0 .09
Taken0 0 1 .05
Taken1 1 1 .14
Delayed Branch .5 .5 .07

Real Processors

MIPS R4000: 3 cycle branch penalty
First cycle: cancelling delayed branch (cancel if not taken)
Next two cycles: Predict not taken

Recent architectures:
With deeper pipelines, delayed branches not very useful
Processors rely more on hardware prediction (will see later) or

may include both delayed and nondelayed branches

Interrupts
Interrupts (a.k.a. faults, exceptions, traps) often require

Surprise jump
Linking of return address
Saving of PSW (including CCs)
State change (e.g., to kernel mode)

Some examples
Arithmetic overflow
I/O device request
O.S. call
Page fault

Make pipelining hard

One Classification of Interrupts

1a. Synchronous
function of program and memory state
(e.g., arithmetic overflow, page fault)

1b. Asynchronous
external device or hardware malfunction
(printer ready, bus error)

Handling Interrupts
Precise Interrupts (Sequential Semantics)

Complete instrns before offending one
Squash (effects of) instrns after
Save PC
Force trap instrn into IF

Must handle simultaneous interrupts
IF –

ID –
EX –
MEM –
WB –

Which interrupt should be handled first?

Interrupts, cont.
Example: Data Page Fault

1 2 3 4 5 6 7 8
i IF ID EX MEM WB
i+1 IF ID EX MEM WB <— page fault (MEM)
i+2 IF ID EX MEM WB <— squash
i+3 IF ID EX MEM WB <— squash
i+4 IF ID EX MEM WB <— squash
i+5 trap —> IF ID EX MEM WB
i+6 trap handler —> IF ID EX MEM WB

Preceding instruction already complete
Squash succeeding instructions

Prevent from modifying state
‘Trap’ instruction jumps to trap handler
Hardware saves PC in IAR
Trap handler must save IAR

Interrupts, cont.

Example: Arithmetic Exception
1 2 3 4 5 6 7 8

i IF ID EX MEM WB
i+1 IF ID EX MEM WB

i+2 IF ID EX MEM WB <— Exception (EX)

i+3 IF ID EX MEM WB <— squash

i+4 IF ID EX MEM WB <— squash

i+5 trap —> IF ID EX MEM WB
i+6 trap handler —> IF ID EX MEM WB

Let preceding instructions complete
Squash succeeding instruction

Interrupts, cont.

Example: Illegal Opcode
1 2 3 4 5 6 7 8

i IF ID EX MEM WB
i+1 IF ID EX MEM WB

i+2 IF ID EX MEM WB

i+3 IF ID EX MEM WB <— ill. op (ID)

i+4 IF ID EX MEM WB <— squash

i+5 trap —> IF ID EX MEM WB
i+6 trap handler —> IF ID EX MEM WB

Let preceding instructions complete
Squash succeeding instruction

Interrupts, cont.
Example: Out-of-order Interrupts

1 2 3 4 5 6 7 8
i IF ID EX MEM WB <— page fault (MEM)
i+1 IF ID EX MEM WB <— page fault (IF)
i+2 IF ID EX MEM WB
i+3 IF ID EX MEM WB

Which page fault should we take?
For precise interrupts – Post interrupts on a status vector associated with

instruction, disable later writes in pipeline
Check interrupt bit on entering WB
Longer latency

For imprecise interrupts – Handle immediately
Interrupts may occur in different order than on a sequential machine
May cause implementation headaches

Interrupts, cont.

Other complications
Odd bits of state (e.g., CCs)
Early writes (e.g., auto-increment)
Out-of-order execution

Interrupts come at random times
The frequent case isn't everything
The rare case MUST work correctly

Multicycle Operations

Not all operations complete in one cycle
Floating point arithmetic is inherently slower than integer

arithmetic
2 to 4 cycles for multiply or add
20 to 50 cycles for divide

Extend basic 5-stage pipeline
EX stage may repeat multiple times
Multiple function units
Not pipelined for now

Handling Multicycle Operations
Four Functional Units

EX: Integer unit
E*: FP/integer multiplier
E+: FP adder
E/: FP/integer divider

Assume
EX takes one cycle & all FP units take 4
Separate integer and FP registers
All FP arithmetic from FP registers

Worry about
Structural hazards
RAW hazards & forwarding
WAR & WAW between integer & FP ops

Simple Multicycle Example
1 2 3 4 5 6 7 8 9 10 11

int IF ID EX MEM WB
fp* IF ID E* E* E* E* MEM WB
int IF ID EX MEM WB? (1)
fp/ IF ID E/ E/ E/ E/ MEM WB
int IF ID EX ** MEM WB (2)
fp/ (3) IF ID ** ** E/ E/
int (4) IF ** ** ID EX

Notes
(1) WAW possible only if?
(2) Stall forced by?
(3) Stall forced by?
(4) Stall forced by?

FP Instruction Issue

Check for RAW data hazard (in ID)
Wait until source registers are not used as destinations by

instructions in EX that will not be available when needed
Check for forwarding

Bypass data from other stages, if necessary
Check for structural hazard in function unit

Wait until function unit is free (in ID)
Check for structural hazard in MEM / WB

Instructions stall in ID
Instructions stall before MEM

Static priority (e.g., FU with longest latency)

FP Instruction Issue (Cont.)

Check for WAW hazards
DIVF F0, F2, F4

SUBF F0, F8, F10

SUBF completes first
(1) Stall SUBF
(2) Abort DIVF's WB

WAR hazards?

More Multicycle Operations

Problems with Interrupts
DIVF F0, F2, F4

ADDF F2, F8, F10

SUBF F6, F4, F12

ADDF and SUBF complete before DIVF
Out-of-order completion

Possible imprecise interrupt
What happens if DIVF generates an exception after ADDF and

SUBF complete??
We'll discuss solutions later

