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Applications benefit from GPU

Graphics Scientific Computing Data Analytics Al Deep Learning Edge Al Video
Training Analytics

Cloud Gaming Genomics Classical Machine Al Deep Learning 5G Private Networks
Learning Inference



GPU vs. CPU
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Throughput-oriented

CPU

Latency-oriented

Credit : https://sites.google.com/site/daveshshingari/explorations/computer-architecture/gpu-architecture



Heterogeneous architecture
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PCI Express 4.0 Host Interface

Overview
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Components

e Graphics Processing Clusters (GPCs)

GPC

PCI Express 4.0 Host
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Components

e Texture Processing Clusters (TPCs)
o  6perGPC
o  41percore
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Components

Streaming Multiprocessor (SMs)
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2 per TPC
82 per core
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Components

e Sharedresources
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Components

CUDA cores
o  Arithmetic operation
o 128 per SM
o 10496 per core

Tensor cores

o  Matrix-matrix multiplication
o 4perSM
o 328 percore
RT cores
o  Raytracing
o 1 per SM
o  82percore
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CUDA core

LO i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

e Fully pipelined ALUs and FPUs Register File (16,384 x 32-bit)

e Ampere
o 64 INT32/FP32 + 64 FP32/5M TENSOR
e Volta, Turing FP32 CORE
o 64 INT32 + 64 FP32/SM 3rd Gen

LDi>1 LU/ST LD/ST LD/ST




Tensor core

e 4 x4 matrix multiplication
e  Multiply-Accumulate Operation (MAC):

o  128intotal = 64 multiplications + 64 accumulations




Tensor core
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Tensor core

Input activations

e New feature in Ampere:
o  Sparsity
o  2xTensor core throughput
o  ~2xreductionin weights footprint and bandwidth
o  ~Nolossininference accuracy
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Image
RT core Camera

e Raytracing: i

o  Realistic simulate lighting
o Physically correct

8 Light Source

Shadow Ray

View Ray
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Scene Object



Image

RT core Camera

e Raytracing: i

o  Realistic simulate lighting
o Physically correct

e Basicraytracing

8 Light Source

Shadow Ray

View Ray

g\

Scene Object



Image

RT core Camera

8 Light Source
e Raytracing: i View Ray

\

Shadow Ray

o  Realistic simulate lighting
o Physically correct

e Basicraytracing
e Optimizations
o  Accelerate intersection testing

" Scene Object



RT core

e Raytracing:
o  Realistic simulate lighting
o  Physically correct
e Basicraytracing
e Optimizations
o  Accelerate intersection testing
o  Reduce the mesh search cost

Credit : https://geidav.wordpress.com/2014/07/18/advanced-octrees- 1-preliminaries-insertion-strategies-and-max-tree-depth/



RT core

Ray tracing with CUDA cores

Shaders

Fetch box
Decode box
Intersection test
Sub-box or tris?

|

Ray/triangle
intersection test

A 4

Return hit

Many thousands
of instruction slots
per ray



RT core

Ray tracing with RT cores

Dedicated hardwares

(e]

o

Box intersection checking
Triangle intersection checking

Shaders RT Core

Intersectio

Fetch box
Decode box
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intersectio

Ray/triangle
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Return hit
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RT core

e New features on Ampere
o  Concurrency on RT core and Tensor core

Ampere Software RT (Shaders)

.-m-mu TR e

}\mpere RT Core

Ihl 6.7 ms

2nd Generation Concurrency (Graphics + RT + Tensor Core)

sdiffag

37 ms



L0 i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR

L0 i-Cache + Warp Scheduler + Dispatoh (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR

Memory Hierarchy

FP32 CORE FP32 CORE
3rd Gen

e 7 Graphics Processing Clusters (GPCs)
o L2Cache (6133 KB)
o 12 32-bit memory controllers
m  Each paired with 512KB of L2 cache

L0 i-Cache + Warp Scheduler + Dispatch (32 thread/clk) L0 i-Cache + Warp Scheduler + Dispatch (32 threadiclk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

e 84 Streaming Multiprocessors (SMs) o o
o Combined L1 data cache/shared memory (128KB) . ol EEE

m  Increased by 33% compared to Turing

m  Configurable based on compute workloads
o  Each SM has 4 processing blocks (partitions) o

m  Register file (64KB) = i

LO instruction cache
: | RTCORE
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L1 Data Cache/Shared Memory

e SMlevel memory

o  Accessible by threads within a SM
e Unified architecture for shared memory, L1 data cache, and texture caching
e Workload-based reconfiguration

o Upto 128 KB per SM



L1 Data Cache/Shared Memory Contd

e Configuration supported (compute mode)
o 128 KB L1+ 0KB Shared Memory
@)
o 64 KBL1+64KBShared Memory
o 28KBL1+100KB Shared Memory
e Graphics workloads and async compute
o 64 KB L1data/texture cache (32 KB on Turing)
o 48 KB shared memory
e Features double shared memory bandwidth
o 128 bytes/clock/SM (doubled compared to Turing)



GDDR6X Memory

New to Ampere family processors

O

Based on prior GDDR6 memory standard in 2018

Peak memory bandwidth of 936 GB/sec with PAM4 signaling
Double I/O data transfer rate

O

O

O

Sends two bits on each clock edge (rising and falling edges)
Voltage levels are divided into 250 mV steps

00,01, 10, 11 (DDR technology)

G6 SIGNALING
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RTXIO

e Gen4 SSDs withup to 7GB/sec read bandwidth
e CPU file systems become a bottleneck in loading game memory data
e GPU-based lossless decompression

o  Reads remain compressed data and delivers to GPU for decompression

o  Removes decompression load from the CPU to GPU Biber  ssipmhiiians
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Memory Hierarchy Overview

Private to Every Processing Block |

l [ 64 KB Register file ] " Loinstruction cache ] :
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[128 KiB L1 data cache/Shared memory] [2 KiB L1 constant cache]
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[ >64 KiB L1.5 constant cache/128 KiB L1 instruction cache ]
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[ 24576 MB GDDR6X ]




Parallelism Support

e CUDA Taskgraphs
o Dependency graph of GPU operations
o  Enable a“define-once/run-repeatedly” execution flow
o  Generally many independent operations to run in parallel on the available cores

o A100 adds hardware features to accelerate traversing a task graph

e Canuse MIGtodivide a GPU into GPU instances and run in parallel



Multi-Instance GPU

e Multi-Instance GPU (MIG)

o New feature which allows the GPU to partitioned into as many as 7 separate CUDA GPU instances
o  Eachinstance has its own path through the entire memory system (on-chip crossbar ports, L2 cache banks,
mem. Controllers, DRAM address buses)

o  Especially useful for Cloud Service Providers



Multi-Instance GPU Example

GPU Instance 0 GPU Instance 1 GPU Instance 2

Compute Instance 0

Compute Instance 1

Compute Instance 2

Compute instance 3

GPU Stice 0

Sys
Pipe

U Sli

GPU Slice 2

Sys
Pipe

GPU Slice 4

Sys
Pipe

U Slic

GPU Slice 6

Sys
Pipe

MIG Memory Parlitions




Multi-GPU

e 3rd Generation NVLink

o Interconnect multiple GPUs on a node using NVSwitch

m  ~2xfaster than previous generation
o  Allows for up to 600 Gb/sec total bandwidth out of 12 links on a given A100 GPU

] ~10X faster t han PCle Gen4

NVIDIA AT100 with NVLink GPU-to-GPU connections



Multi-GPU Example

AMD Rome

AMD Rome
64C

640

200G NIC ; NVMe 200G NIC NVMe 200G NIC ; NVMe
PEX PEX PEX
Switch Switch Switch

Note Third-Generation NVLink connectivity through NVSwitches.



Multi-GPU Performance

1289
Sequences/s
216
Sequences/s
8x V100 DGX A100
FP32 TF32

Training
NLP: BERT-Large

BERT Prcv'lhlnln%ﬂvoughpm using PyTorch Including (2/3)Phase 1
and (1/3)Phase 2 | Phase 1 Seq Len = 128, Mzgeq Len = 512
V100: DGX-1 with 8x V100 using FP32 precision
DGX A100: DGX A100 with Bx A100 using TF32 precision

10 PetaOPS
58 TOPS
CPU Server DGX A100
Inference

Peak Compute

CPU Server: 2x Intel Platinum 8280 using INTE8
DGX A100: DGX A100 with Bx A100 using INTS with Structural Sparsity



Multi-Node Parallelism

e NVIDIA Magnum IO & Mellanox Interconnect Solutions
o  Full support for NVIDIA Magnum IO APIs, which accelerate multi-GPU, multi-node systems to maximize 10

performance

o  Compatible with Mellanox Infiniband and Ethernet connections

o  Supports PCle Gen 4 with SR-IOV which allows it support faster network interfaces cards like 200 Gbit/sec
Mellanox ConnectX-6 VPI HDR Infiniband



Any questions?
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Backup slides



SM deep dive

L0 i-Cache + Warp Scheduler + Dispatch (32 threadiclk) o ey SOftwa j= Ha rd ware
Register File (16,384 x 32-bit)
Grid 1 |:|
Kernel Block || Block = Block
! 0,0 = (1,0 (2,0
pock]| Biock | Block Thread Scalar processor
(0, 4§ (1,1) 1 2,1)

| Grid 3
Fp3y | TENSOR R Li]
CORE Kernel | ,/' u H i |
3rd Gen 2 ; i ' .

4L Thread block

- ke

Grid GPU device

B 1 Stream Processor (SM)

LD/ST LD/ST LD/ST LD/ST SFU




Tensor core

e Mixed-precision Operation

Sum with
FP16 Full precision FP32
storage/input product accumulator

more products

Convert to
FP32 result

o pr
-

'-

Precision | Throughput (TOPS)
FP 16 144
INT 8 288
INT 4 455




BVH ALGORITHM BVH ALGORITHM

Step1 Step 2

RT core

Ko 4
g A

- L) n
e Raytracing: J

o Realistic simulate lighting \
o Physically correct 4
e Basicraytracing Step 1 Step 2
e Optimizations BVH ALGORITHM BVH ALGORITHM
o Accelerate intersection testing Step3 HEpA
o  Reduce the number of rays
[ Bounding volume hierarchy

[]

Step 3



A100 L2 Cache Memory

e A100 Tensor Core includes 40 MB of L2 cache
o  6.7xlarger than Tesla V100 L2 Cache
o  L2cacheisdivided into two partitions to enable higher bandwidth
m  Eachisdividedinto 40 L2 cache slices
m 8512KBL2slices are associated with each memory controller
e Compute Data Compression
o  Savesup to 4x DRAM read/write bandwidth, o lj BW savings
o  Savesupto4xL2read bandwidth, and up to 2x L2 capacity. o Capacity

savings

BW savings



A100 HBM2 DRAM Subsystem

e Memory stacks located on the same physical package as the GPU
e A100GPU includes 40 GB of fast HBM2 DRAM

e HBM2delivers 1555 GB/sec memory bandwidth
o  With 1215 MHz (DDR) data rate
o 1.7 higher than Tesla V100
e Error Correction Code (ECC)
o  Provides higher reliability for compute applications that are sensitive to data corruption
o Importantin large-scale cluster environments



Parallelism Support -- Multi-Instance GPU

4 Parallel CUDA processes / containers One container Debugger

OOl e ||e

Jarvis + TensorRT

Instance Instance Instance

Memory

GPU Instance GPU Instance GPU Instance

Example of multiple independent GPU Compute workloads running in parallel using a MIG configuration
on an A100 GPU with three GPU Instances and variable numbers of Compute Instances within each
GPU Instance.



