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Applications benefit from GPU



GPU  vs. CPU

Latency-oriented Throughput-oriented 

Credit： https://sites.google.com/site/daveshshingari/explorations/computer-architecture/gpu-architecture



Heterogeneous architecture

PCI Express Bus

Credit： https://sites.google.com/site/daveshshingari/explorations/computer-architecture/gpu-architecture



Overview

● 28.3 billion transistors

● Die area: 628.4 mm2

● Samsung’s 8nm 



Components

● Graphics Processing Clusters (GPCs)



Components

● Texture Processing Clusters (TPCs) 
○ 6 per GPC
○ 41 per core



Components

● Streaming Multiprocessor (SMs)
○ 2 per TPC
○ 82 per core



● Shared resources
○ L0 i-Cache
○ Warp scheduler
○ Dispatch
○ Register files

Components



Components

● CUDA cores
○ Arithmetic operation
○ 128 per SM
○ 10496 per core

● Tensor cores
○ Matrix-matrix multiplication
○ 4 per SM
○ 328 per core

● RT cores
○ Ray tracing
○ 1 per SM
○ 82 per core



CUDA core

● Fully pipelined ALUs and FPUs

● Ampere
○ 64 INT32 / FP32 + 64 FP32 / SM

● Volta, Turing
○ 64 INT32 + 64 FP32 / SM



Tensor core

● 4 x 4 matrix multiplication

● Multiply-Accumulate Operation (MAC):
○ 128 in total = 64 multiplications + 64 accumulations



Tensor core

Credit： Raihan, Md Aamir, Negar Goli, and Tor M. Aamodt. "Modeling deep learning accelerator enabled GPUs." 2019 ISPASS



Tensor core

● New feature in Ampere:
○ Sparsity
○ 2x Tensor core throughput
○ ~ 2x reduction in weights footprint and bandwidth
○ ~ No loss in inference accuracy



RT core

● Ray tracing:
○ Realistic simulate lighting
○ Physically correct
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RT core

● Ray tracing:
○ Realistic simulate lighting
○ Physically correct

● Basic ray tracing

● Optimizations
○ Accelerate intersection testing
○ Reduce the mesh search cost

Credit： https://geidav.wordpress.com/2014/07/18/advanced-octrees-1-preliminaries-insertion-strategies-and-max-tree-depth/



RT core

● Ray tracing with CUDA cores



RT core

● Ray tracing with RT cores

● Dedicated hardwares 
○ Box intersection checking
○ Triangle intersection checking



RT core

● New features on Ampere
○ Concurrency on RT core and Tensor core



Memory Hierarchy

● 7 Graphics Processing Clusters (GPCs)
○ L2 Cache (6133 KB)
○ 12 32-bit memory controllers

■ Each paired with 512KB of L2 cache

● 84 Streaming Multiprocessors (SMs)
○ Combined L1 data cache/shared memory (128KB)

■ Increased by 33% compared to Turing
■ Configurable based on compute workloads

○ Each SM has 4 processing blocks (partitions)
■ Register file (64KB)
■ L0 instruction cache



L1 Data Cache/Shared Memory

● SM level memory
○ Accessible by threads within a SM

● Unified architecture for shared memory, L1 data cache, and texture caching

● Workload-based reconfiguration
○ Up to 128 KB per SM



L1 Data Cache/Shared Memory Cont’d

● Configuration supported (compute mode)
○ 128 KB L1 + 0 KB Shared Memory
○ …...
○ 64 KB L1 + 64 KB Shared Memory
○ 28 KB L1 + 100 KB Shared Memory

● Graphics workloads and async compute
○ 64 KB  L1 data/texture cache (32 KB on Turing)
○ 48 KB shared memory

● Features double shared memory bandwidth 
○ 128 bytes/clock/SM (doubled compared to Turing)



GDDR6X Memory

● New to Ampere family processors
○ Based on prior GDDR6 memory standard in 2018

● Peak memory bandwidth of 936 GB/sec with PAM4 signaling
○ Double I/O data transfer  rate
○ Sends two bits on each clock edge (rising and falling edges)
○ Voltage levels are divided into 250 mV steps

■ 00, 01, 10, 11 (DDR technology)



RTX IO

● Gen4 SSDs with up to 7GB/sec read bandwidth

● CPU file systems become a bottleneck in loading game memory data

● GPU-based lossless decompression
○ Reads remain compressed data and delivers to GPU for decompression
○ Removes decompression load from the CPU to GPU



Memory Hierarchy Overview



Parallelism Support

● CUDA Taskgraphs

○ Dependency graph of GPU operations

○ Enable a “define-once/run-repeatedly” execution flow

○ Generally many independent operations to run in parallel on the available cores

○ A100 adds hardware features to accelerate traversing a task graph

● Can use MIG to divide a GPU into GPU instances and run in parallel



Multi-Instance GPU

● Multi-Instance GPU (MIG)

○ New feature which allows the GPU to partitioned into as many as 7 separate CUDA GPU instances

○ Each instance has its own path through the entire memory system (on-chip crossbar ports, L2 cache banks, 

mem. Controllers, DRAM address buses)

○ Especially useful for Cloud Service Providers



Multi-Instance GPU Example



Multi-GPU

● 3rd Generation NVLink

○ Interconnect multiple GPUs on a node using NVSwitch

■ ~2x faster than previous generation

○ Allows for up to 600 Gb/sec total bandwidth out of 12 links on a given A100 GPU

■ ~10X faster t han PCIe Gen4



Multi-GPU Example



Multi-GPU Performance



Multi-Node Parallelism

● NVIDIA Magnum IO & Mellanox Interconnect Solutions

○ Full support for NVIDIA Magnum IO APIs, which accelerate multi-GPU, multi-node systems to maximize IO 

performance

○ Compatible with Mellanox Infiniband and Ethernet connections

○ Supports PCIe Gen 4 with SR-IOV which allows it support faster network interfaces cards like 200 Gbit/sec 

Mellanox ConnectX-6 VPI HDR Infiniband



Any questions?
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Backup slides



SM deep dive



Tensor core

● Mixed-precision Operation

Precision Throughput (TOPS)

FP 16 144

INT 8 288

INT 4 455



RT core

● Ray tracing:
○ Realistic simulate lighting
○ Physically correct

● Basic ray tracing

● Optimizations
○ Accelerate intersection testing
○ Reduce the number of rays

■ Bounding volume hierarchy



A100 L2 Cache Memory

● A100 Tensor Core includes 40 MB of L2 cache
○ 6.7x larger than Tesla V100 L2 Cache
○ L2 cache is divided into two partitions to enable higher bandwidth

■ Each is divided into 40 L2 cache slices
■ 8 512 KB L2 slices are associated with each memory controller

● Compute Data Compression
○ Saves up to 4x DRAM read/write bandwidth, 
○ Saves up to 4x L2 read bandwidth, and up to 2x L2 capacity.



A100 HBM2 DRAM Subsystem

● Memory stacks located on the same physical package as the GPU

● A100 GPU includes 40 GB of fast HBM2 DRAM

● HBM2 delivers 1555 GB/sec memory bandwidth
○ With 1215 MHz (DDR) data rate
○ 1.7 higher than Tesla V100

● Error Correction Code (ECC)
○ Provides higher reliability for compute applications that are sensitive to data corruption
○ Important in large-scale cluster environments



Parallelism Support -- Multi-Instance GPU


