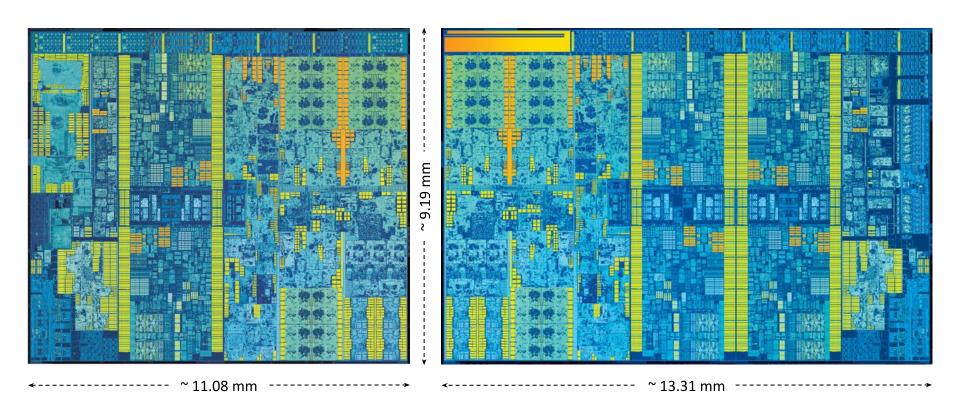
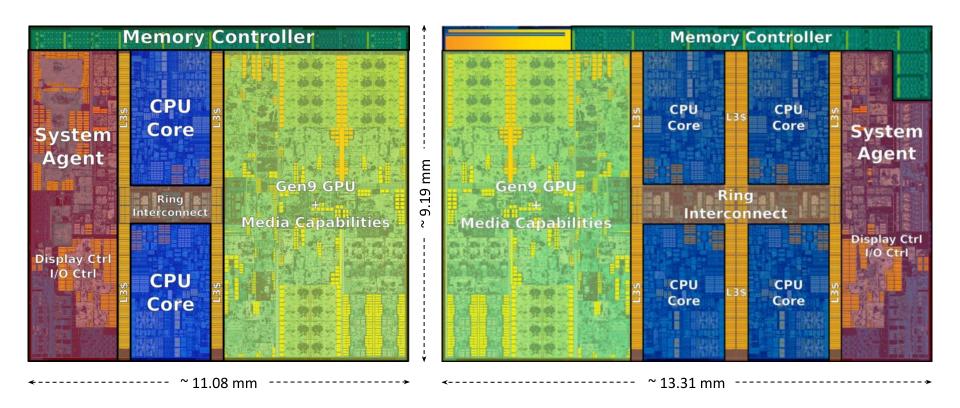
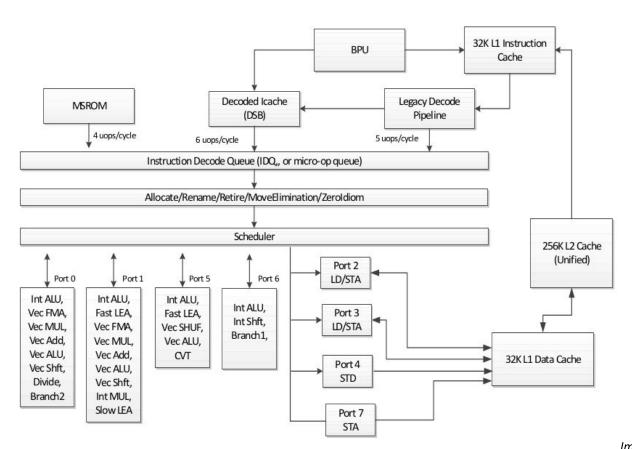
Intel Skylake

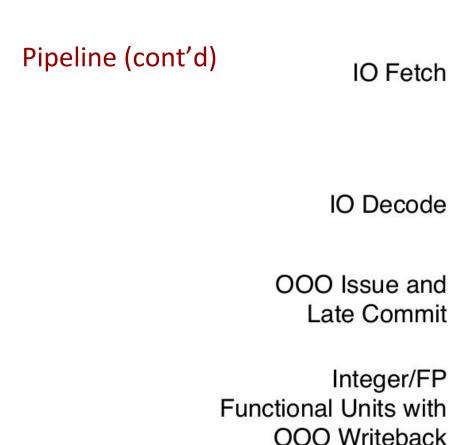

Ryan Estep Vishakh Suresh Babu

A brief introduction


- Intel Skylake microarchitecture
 - o 2015
 - designed for 14nm process
 - preceded by Broadwell
- Intel development process
 - Tick-Tock
 - Process-Architecture-Optimization
- Tick was new process, adapting old architectures
- Tock was designing new microarchitecture

Intel development roadmap				
Cycle	Process	Introduction	Microarchitecture	
Tock	32 nm	2010	Sandy Bridge	
Tick	22 nm	2011	Ivy Bridge	
Tock	22 nm	2013	Haswell	
Tick/ Process	14 nm	2014	Broadwell	
Architecture	14 nm	2015	Skylake (Client)	
Optimization	14 nm+	2016	Kaby Lake	
Optimization	14 nm++	2017	Coffee Lake, Skylake (Server)	
Optimization	14 nm++	2018	Amber Lake, Whiskey Lake	
Optimization	14 nm++	2019	Cascade Lake	
Optimization	14 nm++	2020	Cooper Lake, Comet Lake	
Optimization	14 nm++	2021	Rocket Lake	


Die shot


Die shot (cont'd)

Pipeline

Image source: Figure 2-6, [1]

Load/Store Execution

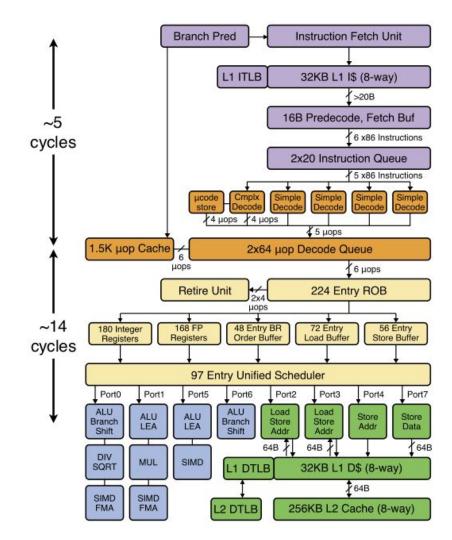
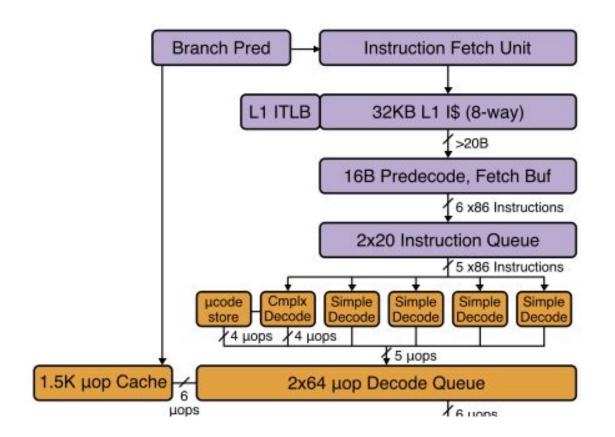
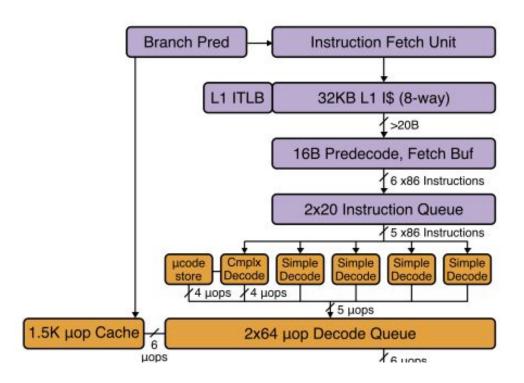



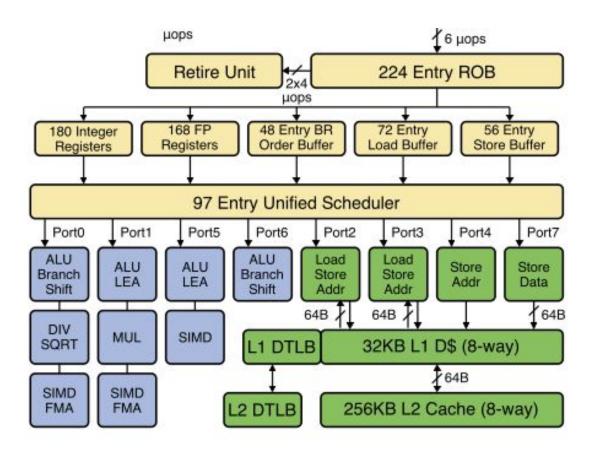
Image source: Page 21, [3]

Front end overview

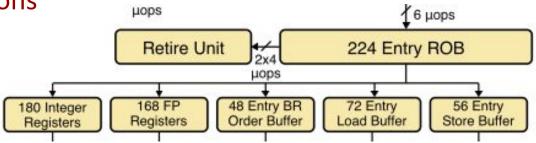
MOP fusion & Decoding


- Pre-decoding buffer
 - mark instruction boundaries
 - prefix decoding (e.g. branches)
- IQ has the ability to fuse MOPs into a single instruction
 - improved bandwidth
- Decode complex and variable
 MOPs into fixed size μ-ops

Source: Page 2-18, [1]; Page 22 [3] Image source: Page 21, [3]


μ-op cache

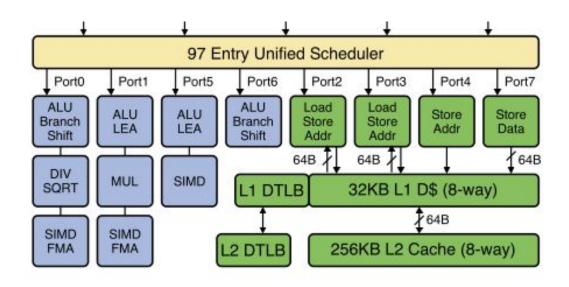
- μ-op cache (or Data Stream Buffer)-has cache lines of decoded μ-ops ready
- Bypasses the entire other path to IDQ (immensely preferred path)
- 1536 μ -ops \rightarrow 32 sets, 8 lines/set, 6 μ -ops/line
- Competitively shared
- Hit rate > 80%
 - "Hot spots" ~100%



Source: Page 2-18, [1]; Page 150, [2] Image source: Page 21, [3]

Execution engine overview

Renaming & optimizations



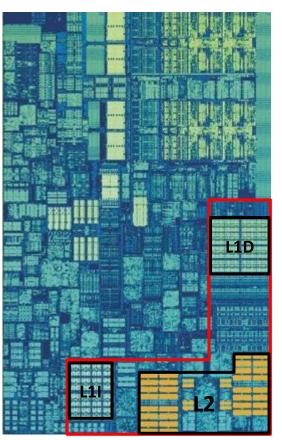
- Reorder Buffer for OoO Execution
 - in-order commit
 - increased size from predecessors
- Register Alias Table maps architectural registers to physical registers
- Speculative Execution
 - branch Order Buffer for mispeculation
- Renaming optimizations include Move Elimination, Zero or Ones Idiom

Source: Page 2-20, [1]; Page 24, 28 [3] Image source: Page 21, [3]

Scheduler & EUs

- Unified Reservation Station
- Scheduler for sorting μ-ops between ports and holding them until EU is ready
 - competitively shared and increased in size from predecessors
 - OoO oldest ready
- Ports are balanced between instructions for maximum performance

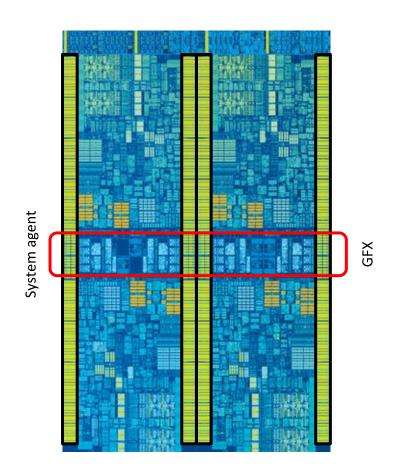
Source: Page 2-21, [1]; Page 24 [3] Image source: Page 21, [3]


Memory subsystem overview

- Caches:
 - L0 μ-op cache
 - 3-level cache hierarchy
 - L1 cache
 - L2 cache
 - L3 cache/ LLC
 - eDRAM (on Skylake GPUs)
- TLB

Local memory subsystem

Cache hierarchy


- *L1 cache* :
 - separate Instruction and Data caches
 - o shared by 2 threads on the same core
 - O L1D bandwidths :
 - load: 64 B/ cycle
 - store: 32 B/ cycle
- L2 cache:
 - unified
 - o non-inclusive of L1
 - 64 B/ cycle bandwidth to L1

Source: Page 2-20, [1] Image source: [5]

Cache hierarchy (cont'd)

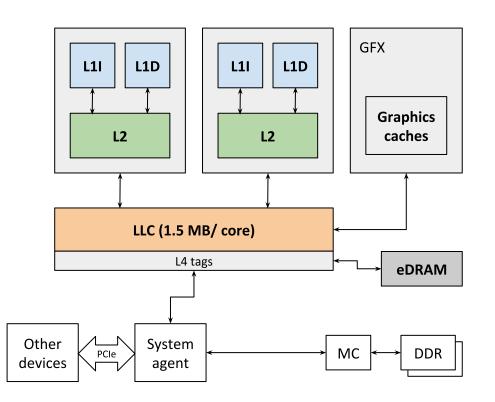
- L3 cache/LLC:
 - inclusive of L2
 - shared among all cores
 - split into slices connected by 4 rings :
 - data, request, acknowledgement & snoop
 - to increase the bandwidth
 - uses an undocumented hash function, mapping cache lines almost evenly across slices
 - o per core bandwidths (@ ring clock):
 - read & write : 32 B/ cycle (two times that of Haswell

Source: Page 2-20, [1] Image s

Image source : [5]

Cache parameters

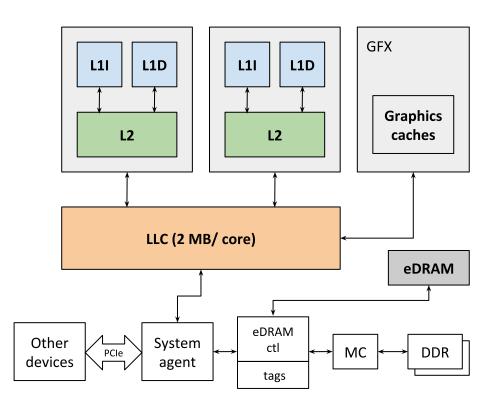
Level	Capacity	Associativity	Line size (bytes)	Fastest latency (cycles)	Update policy
L1I	32 KB	8	64	N/A	N/A
L1D	32 KB	8	64	4	writeback
L2	256 KB	4	64	12	writeback
L3	Up to 2 MB per core	Up to 16 ways	64	44	writeback


Cache parameters (cont'd)

- L2 cache has be reduced from an 8-way (in Haswell) to 4-way set associative.
 - Theoretically, half the associativity $\Rightarrow \uparrow$ in miss rate.
 - Practically,
 - ↓ in power on a successful data access
 - saves area on the silicon die
 - ↑ in miss rate countered by
 - doubling bandwidth to L2 misses
 - improvement in cache and page miss handling
 - Net effect : A performance comparable to Haswell @ a reduced power consumption.

eDRAM based cache

Haswell & Broadwell:

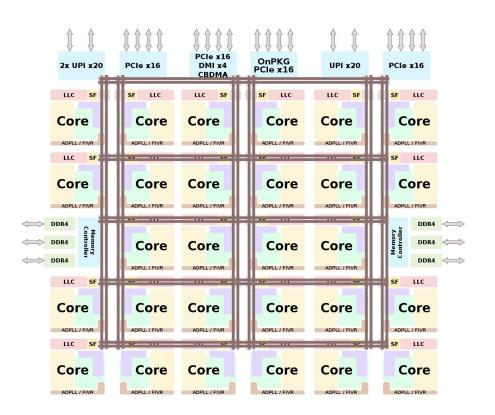

- eDRAM access through L4 tags in LLC.
- eDRAM acts like a victim cache for LLC.
- eDRAM fetches from processor :
 - earlier tag checking
 - faster
- Other devices require eDRAM data:
 - go through LLC & do the L4 tag conversion
 - slower

eDRAM based cache (cont'd)

Skylake:

- eDRAM behaves as a buffer!
- Other devices requiring eDRAM data do not need to navigate through the on-chip LLC.
- Graphics workloads need to circle around the system agent.
- All memory accesses through MC get looked up in eDRAM.
 - hit: use value from eDRAM.
 - miss: value stored on the eDRAM.
- Available in 2 sizes : 64 GB & 128 GB (48 EU) (72 EU)

Source: [4] Image reference: Page 18, [7]


TLB parameters

Level	Page size	Entries	Associativity	Partition
ITLB	4 KB	128	8	dynamic
	2 MB/ 4 MB	8 per thread		fixed
DTLB	4 KB	64	4	fixed
	2 MB/ 4 MB	32	4	fixed
	1 GB	4	4	fixed
STLB	4 KB and 2 MB/ 4 MB	1536	12	fixed
	1 GB	16	4	fixed

Data source: Page 2-20, [1]

Parallelism summary

- Client Dual-core or quad-core
- Dual-thread
 - competitively shared
- Skylake (Server)
 - doubled bandwidth after front-end
 - mesh Interconnect
 - o up to 28-cores (56 threads)
 - AVX-512

Source: Page 17, 29 [3]; [6]

More special features

- Configurable core
 - Client (14nm)
 - Server (14nm+) → higher drive current, lower power
- Focus on graphics
 - wanted to improve performance and power consumption during video...
 - o new IPU/ISP in mobile units
- Security technology
 - protection from attacks
 - SGX, MPX --now deprecated

- Speed Shift power management
- Turbo Boost Technology
 - turbo mode : cores run faster than the rated frequency
 - algorithmic overclocking

Source: Page 18, 19 [3]; [5]; [6]; [12]

Power management

- Previously, OS responsible for DVFS based on the current workload.
 - eg: CPU utilisation peaked $\Rightarrow \uparrow$ f to cope up with it
 - limitation : granularity of OS response time 10s of milliseconds
- "Speed Shift" new power management.
 - quickly alternate core frequencies in response to power loads
 - a new unit called Package Control Unit (PCU)
 - full-fledged microcontroller
 - collects and tracks many SoC statistics
 - speed shift kicks in ~1 ms
 - OS bases P-state control can be as slow as 30 ms

Skylake vs Kaby Lake

• Turbo boost:

Skylake : 3.1 GHz

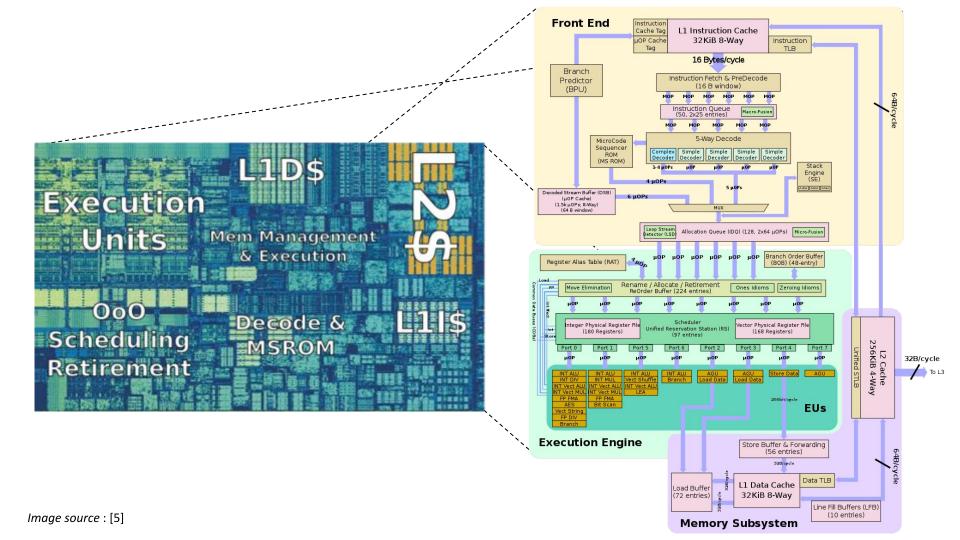
• Kaby Lake: 3.5 GHz

• Encoding & decoding video codecs (10-bit 4K HEVC video codecs as well as 4K VP9):

Skylake : software support

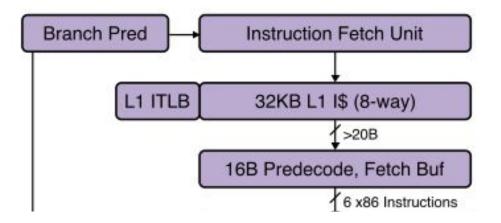
• Kaby Lake : hardware support

Playing	Battery-life improvement in Kaby Lake	Power consumption (W)	
		Skylake	Kaby Lake
10-bit 4K HEVC video	2.6 x	10.2	0.5
4K video on YouTube	1.7 x	5.8	0.8

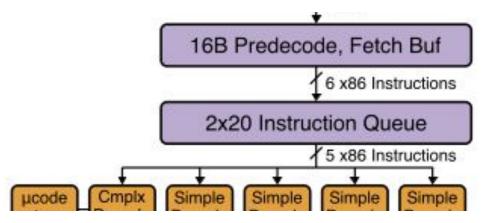

References I

- 1. "Intel 64 and IA-32 Architectures Optimization Reference Manual." *Intel Corporation*, https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf.
- 2. Fog, A. "The microarchitecture of Intel, AMD and VIA CPUs." *Technical University of Denmark*, https://www.agner.org/optimize/microarchitecture.pdf.
- 3. Batten, C. "ECE4750 Computer Architecture Intel Skylake." *Cornell University*, https://www.csl.cornell.edu/courses/ece4750/2016f/handouts/ece4750-section-skylake.pdf.
- 4. The Intel Skylake Mobile and Desktop Launch, with Architecture Analysis." *AnandTech*, https://www.anandtech.com/show/9582/intel-skylake-mobile-desktop-launch-architecture-analysis/.
- 5. "Skylake (Client) Microarchitectures Intel." WikiChip, en.wikichip.org/wiki/intel/microarchitectures/skylake (client).
- 6. "Skylake (Server) Microarchitectures Intel." WikiChip, en.wikichip.org/wiki/intel/microarchitectures/skylake (server).
- 7. "Skylake (Client) Microarchitectures Intel." WikiChip,
 en.wikichip.org/w/images/8/8f/Technology Insight Intel%E2%80%99s Next Generation Microarchitecture Code Name Skylak
 e.pdf.
- 8. "10 key things to know about Intel's Kaby Lake CPUs." *PCWorld*, https://www.pcworld.com/article/3111186/10-key-things-to-know-about-intels-kaby-lake-cpus.html.

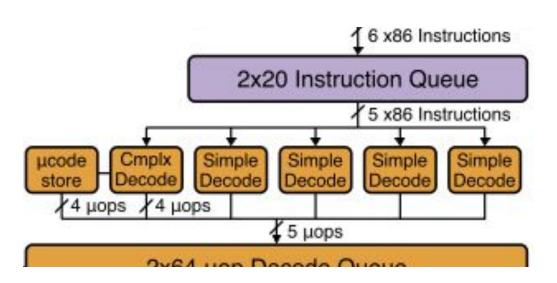
References II

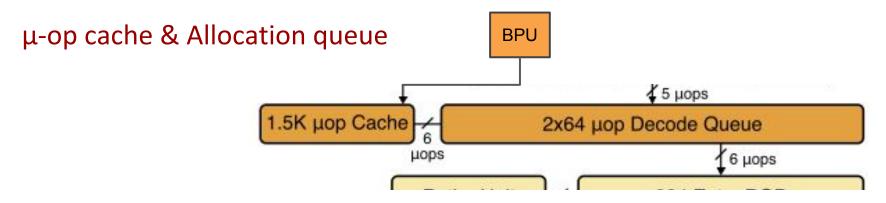

- 9. "Intel Core i7-6700HQ Processor Technical Specifications." *Intel Corporation*, https://www.intel.com/content/www/us/en/products/processors/core/i7-processors/i7-6700hq.html.
- 10. "Intel Core i7-6700T Processor Technical Specifications." *Intel Corporation*, https://www.intel.com/content/www/us/en/products/processors/core/core-vpro/i7-6700t.html.
- 11. "Intel Core i9-9960X X-series Processor Technical Specifications." *Intel Corporation*, https://www.intel.com/content/www/us/en/products/processors/core/x-series/i9-9960x.html.
- 12. "Intel® Turbo Boost Technology 2.0" *Intel Corporation*, https://www.intel.in/content/www/in/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html

Supplementary slides


Fetch & Pre-decoding

- Fetching is dual-thread
 - Shared evenly
- 16B chunks of code
- Pre-decoding buffer
 - Mark instruction boundaries
 - Prefix decoding (e.g. branches)
- BPU-branch prediction
 - Further "vision" than predecessors


Instruction queue & MOP fusion


- 25 entries/thread
- Instruction queue holds macro-ops until the decoder is ready
- Has the ability to fuse MOPs into a single instruction
 - Improved bandwidth

Decoding

- 5-way decoder
 - 1 complex and 4 simple
- Decodes complex and variable
 MOPs into fixed size μ-ops
- Supports 5 μ-ops sent down the pipeline
- Complex decoder=1-4 μ-ops
- More than 4 μ-ops->microcode sequencer

- Allocation queue (or Instruction Decode Queue)-interface between the in-order fetch/decode and OoO execution engine
 - Partitioned (non-competitive) 64 entries/thread
 - Loop stream detector detects loops and repeats μ-ops (server only)
- μ-op cache (or Data Stream Buffer)-has cache lines of decoded μ-ops ready
 - Bypasses the entire other path to IDQ (immensely preferred path)
 - \circ 1536 μ-ops--32 sets, 8 lines/set, 6 μ-ops/line
- Competitively shared

Source: Page 2-18, Page 2-20 [1]; Page 150, [2]

Intel Turbo Boost

- Some programs are memory-bound & some CPU-bound
 - ⇒ need not always run the CPU at max frequency.
- Turbo Boost as an energy-η soln to this problem :
 - run at base clock speed for lighter workloads.
 - less power consumption
 - less heat dissipation
 - dynamically switch to a greater clock rate for heftier loads.
 - o upto a max turbo boost frequency.
 - still within the safe power and temp limits.
 - "algorithmic overclocking"

Intel Turbo Boost (cont'd)

Processor	Processor base frequency (GHz)	Max turbo boost frequency (GHz)	Comments
Intel Core i7-6700HQ	2.6	3.5	Mobile processor
Intel Core i7-6700T	2.8	3.6	Mainstream desktop processor
Intel Core i9-9960X X-series	3.1	4.4	High end processor