ARM Neoverse N1

Aishik Ghosh, Anant Kandikuppa, Zane Fink CS 433 Mini Project

Outline

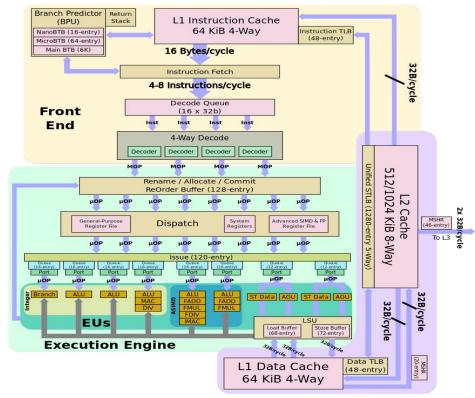
- 1. Introduction
- 2. Core Microarchitecture
- 3. Memory Hierarchy
- 4. Parallelism Support
- 5. Special Features for Infrastructure and Security

Introduction

- ARM CPUs are RISC processors designed by Arm Holdings
- ARM Neoverse N1 is an infrastructure-focused chip that implements the Arm v8.2-A instruction set
- Hardware features make the Neoverse N1 especially suited to cloud and infrastructure applications

Introduction: Infrastructure

- Workloads commonly found in cloud environments such as AWS, Microsoft Azure, etc.
- Codes characterized by:
 - Complex branching behavior
 - JIT compiled
 - Object management
 - Garbage collection
- Concretely: web servers, datacenter applications

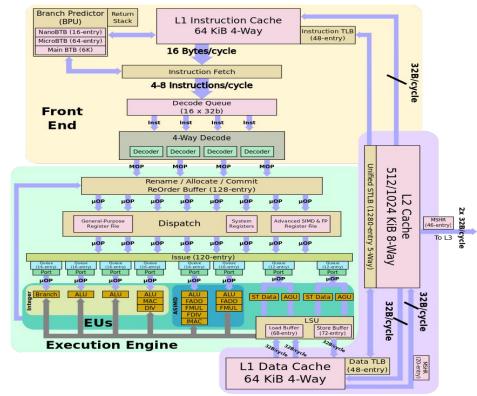


Core Microarchitecture

- Superscalar processor
- 11-stage out of order accordion

pipeline

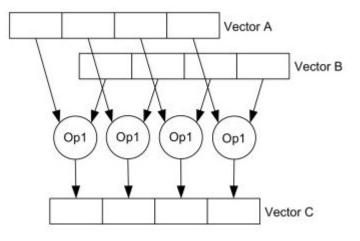
• Can drop to 9-stages

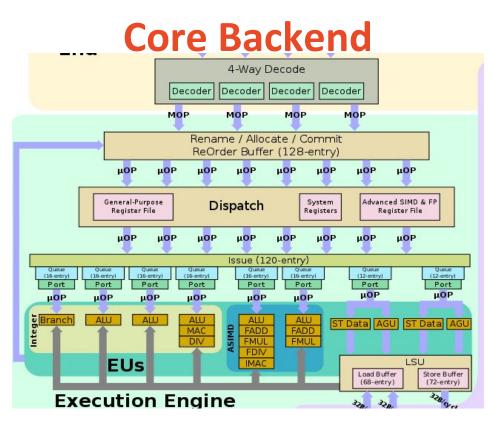


WikiChip - Neoverse N1 Microarchitecture

Core Microarchitecture

- Core has
 - 4 way decode
 - o 3 ALUs
 - 1 branch exec unit
 - 2 adv SIMD units
 - 2 load/store exec unit

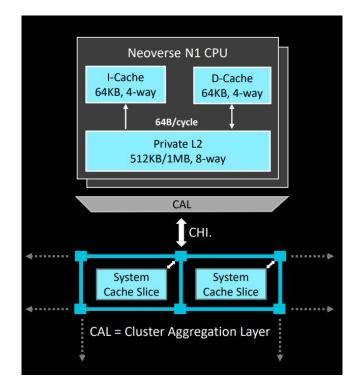

WikiChip - Neoverse N1 Microarchitecture


SIMD

- Single instruction multiple data
- Adv SIMD performance
 - native quad-word, dual 128-bit units fed by separate issue queues
 - \circ Latencies
 - Floating point add 2 cycles
 - Floating point multiply 3 cycles
 - Floating point multiply add 4 cycles

SIMD

WikiChip - Neoverse N1 Microarchitecture


Branch Prediction

- 6k-entry main branch target buffer
- 3-cycle access latency to retrieve branch target addresses (without l-cache)
- Once a prediction is made, the predicted address is stored into a 12-entry fetch queue which tracks future fetch transactions.
- Decoupled Branch Prediction

Memory Hierarchy Introduction

- Deep Cache Hierarchy L1, L2, optional shared L3, and an optional system-level cache.
- Strict inclusivity between L1 data cache and L2 cache, non-inclusivity between L1 instruction cache and L2 cache

Arm Neoverse N1 Cloud-to-Edge Infrastructure SoCs

• Instruction Cache (Private):

- 64 KB
- 4-way set-associative
- 16B of instructions per cycle
- 4-cycle LD-use latency.

• L1 Data Cache (Private):

- 64 KB
- 4-way set-associative
- 32B per cycle
- 4-cycle LD-use latency

11

• L2 Data Cache (Private):

- Configurable, 256KB-1MB in size
- 8-way set associative
- 64B per cycle between L1/L2 caches
- 9-11-cycle LD-use latency

• (Optional) L3 Cluster Data Cache:

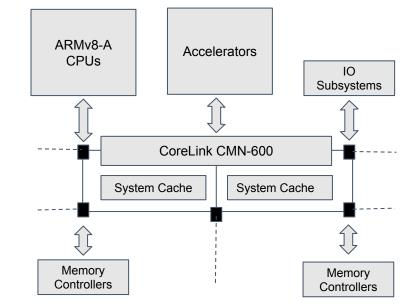
- Multiple cores can be configured in a cluster
- Up to 2MB, 28-33 cycle LD-use latency
- Modified Exclusive Shared Invalid (MESI) coherence protocol
- Coherency managed through snoop filter
- (Optional) System level Cache:
 - Up to 128MB
 - Coherency managed through snoop filter
 - 22ns LD-use Latency

• Instruction TLB

- 48-entry, fully associative
- Support for 4KB, 16KB, 64KB, 2MB, and 32MB page sizes
- Data TLB
 - 48-entry, fully associative
 - Support for 4 KB, 16KB, 64KB, 2MB, and 512MB page sizes
- Unified (instruction/data) L2 TLB
 - 1280-entry 5-way set associative

Memory Hierarchy Key Features

- Cache miss predictor: Bypasses cache hierarchy to avoid cache access times.
- Cache prefetcher that can detect complicated access patterns.
- Fetch-aware cache replacement policies
- Supports maximum physical memory of 256 TB
- 68 in-flight loads, 72 in-flight stores


Parallelism Support

- 4-128 single threaded cores per chip
- Private L1 & L2 caches
- Optional shared L3 cache
- Multiple clusters supported by CoreLink CMN-600 mesh interconnect
- Allows specialized cores and accelerators to work together

Corelink CMN-600 Mesh Interconnect

- Provides high-frequency, non-blocking access to shared memory resources
- Supports upto 32 coherent clusters of CPUs / Accelerators
- Provides upto 128MB of shared system cache (SC)
- Optimized for low memory latency; ~1TB/s bandwidth

CMN-600 Overview

Corelink CMN-600 Mesh Interconnect - SC

- Integrated Snoop Filters
 - Reduces number of snoop requests
 - Lowers power consumption
- Cache Stashing
 - Allows external agents to directly place data into L3/L2 core caches
- Direct Memory Transfer
 - Allows memory controllers to directly send data to the requestor

Infrastructure Specific Features

- Enhanced Virtualization Support
 - VMID extended to 16 bits
 - Hardware update of access/dirty bits in page tables
- Improved Side Channel Protection
- Supports Armv8-A architecture extensions
 - CRC32 instruction to accelerate checksum computation
 - FP16 and int8 dot product support for ML inference
- Commercial deployment <u>AWS Graviton 2</u> processor

Thank You!

Questions?

References

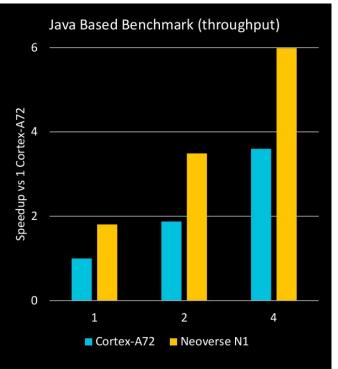
- R. Christy, S. Riches, S. Kottekkat, P. Gopinath, K. Sawant, A. Kona, and R. Harrison. 2020. 8.3 A 3GHz ARM Neoverse N1 CPU in 7nm FinFET for Infrastructure Applications. In 2020 IEEE International Solid- State Circuits Conference - (ISSCC), 148–150.
 DOI:https://doi.org/10.1109/ISSCC19947.2020.9062889
- [2] A. Pellegrini and C. Abernathy. 2019. Arm Neoverse N1 Cloud-to-Edge Infrastructure SoCs. In 2019 IEEE Hot Chips 31 Symposium (HCS), 1–21. DOI:https://doi.org/10.1109/HOTCHIPS.2019.8875640
- [3] A. Pellegrini, N. Stephens, M. Bruce, Y. Ishii, J. Pusdesris, A. Raja, C. Abernathy, J. Koppanalil, T. Ringe, A. Tummala, J. Jalal, M. Werkheiser, and A. Kona. 2020. The Arm Neoverse N1 Platform: Building Blocks for the Next-Gen Cloud-to-Edge Infrastructure SoC. *IEEE Micro* 40, 2 (March 2020), 53–62. DOI:https://doi.org/10.1109/MM.2020.2972222
- [4] Neoverse N1 Microarchitectures ARM WikiChip. Retrieved December 2, 2020 from https://en.wikichip.org/wiki/arm_holdings/microarchitectures/neoverse_n1
- [5] Single Data Multiple Instruction. Retrieved December 6, 2020 from <u>https://www.sciencedirect.com/topics/computer-science/single-instruction-multiple-data</u>
 [6] Corelink CMN-600 - ARM - Retrieved December 6, 2020 from
 - https://developer.arm.com/ip-products/system-ip/corelink-interconnect/corelink-coherent-mesh-network-family/corelink-cmn-600

Appendix

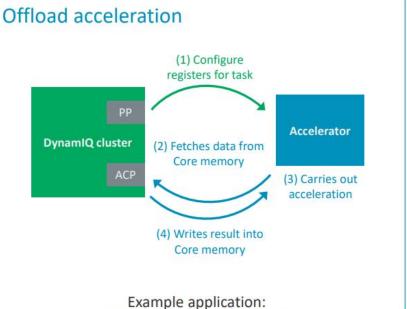
Concrete Example Application

- Nginx: an open-source high-performance webserver, proxy, and load balancer
- Goal: Reduce latency of a single request, maximize number of concurrent requests that can be serviced
- Quickly servicing a request requires:
 - Low memory latency and high bandwidth to process the request and transfer the response
 - Fast context switches between user and kernel space
 - Fast instruction fetching on the CPU front end

User

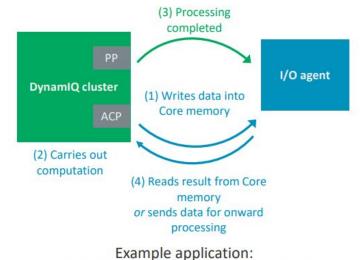

Kernel

Network


interface

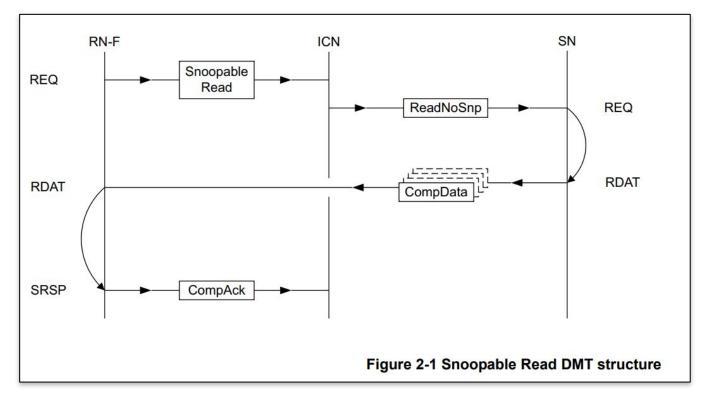
Memory Hierarchy Performance

Workload stressor	Neoverse N1 Features	N1 improvement over Cortex-A72
Object management	Memory allocations	2.4x faster
	Object/array initializations	5x faster
	Copy chars	1.6x faster
	Smart HW handling of SW barriers (DMBs)	Memory barriers elided if unnecessary
Instruction footprint	i-cache miss rate and branch mispredicts	Reduced by 1.4x
	L2 accesses	Reduced by 2.25x
	Fully HW coherent Icache	Accelerates VM bring up by up to 20x
Garbage collection	Locking throughput w/ V8.2 Arch Atomic Instructions	Improved by 2x



Cache Stashing

Offload crypto acceleration


I/O processing

Packet processing in network systems

Arm DynamIQ HotChips Presentation

Direct Memory Transfer

AMBA 5 CHI Architecture Specification