
Chapter 3 – Instruction-Level Parallelism and

its Exploitation (Part 1)

ILP vs. Parallel Computers

Dynamic Scheduling (Section 3.4, 3.5)

Dynamic Branch Prediction (Section 3.3, 3.9, and Appendix C)

Hardware Speculation and Precise Interrupts (Section 3.6)

Multiple Issue (Section 3.7)

Static Techniques (Section 3.2, Appendix H)

Limitations of ILP

Multithreading (Section 3.11)

Putting it Together (Mini-projects)

ILP vs. Parallel Computers

Instruction-Level Parallelism (ILP)

Instructions of single process (or thread) executed in parallel

Parallel components must appear to execute in sequential

program order

Parallel Computers or Multiprocessors

Program divided into multiple processes (or threads)

Instructions of multiple threads executed in parallel

Typically also involves ILP within each thread

No a priori sequential order between parallel threads

Dynamic Scheduling - Basics

The situation:

DIV.D F0, F2, F4

ADD.D F10, F0, F8

MULT.D F6, F6, F14

The problem:

ADD stalls due to RAW hazard

MULT stalls because ADD stalls

Example

1 2 3 4 5 6 7 8

DIV.D IF ID E/ E/ E/ E/ MEM WB

ADD.D IF ID ** ** ** E+ E+

MULT.D IF ** ** ** ID E* why stall?

In-order execution limits performance

Dynamic Scheduling - Basics (Cont.)

Solutions

Static Scheduling

Dynamic Scheduling

Static Scheduling (Software)

Compiler reorganizes instructions

+

+

(Will see more later)

Dynamic Scheduling (Hardware)

Hardware reorganizes instructions

+

+

Dynamic Scheduling - Basics (Cont.)**

Solutions

Static Scheduling

Dynamic Scheduling

Static Scheduling (Software)

Compiler reorganizes instructions

+ Simpler hardware

+

(Will see more later)

Dynamic Scheduling (Hardware)

Hardware reorganizes instructions

+

+

Dynamic Scheduling - Basics (Cont.)**

Solutions

Static Scheduling

Dynamic Scheduling

Static Scheduling (Software)

Compiler reorganizes instructions

+ Simpler hardware

+ Can use more powerful algorithms

(Will see more later)

Dynamic Scheduling (Hardware)

Hardware reorganizes instructions

+

+

Dynamic Scheduling - Basics (Cont.)**

Solutions

Static Scheduling

Dynamic Scheduling

Static Scheduling (Software)

Compiler reorganizes instructions

+ Simpler hardware

+ Can use more powerful algorithms

(Will see more later)

Dynamic Scheduling (Hardware)

Hardware reorganizes instructions

+ Handles dependences unknown at compile time

+

Dynamic Scheduling - Basics (Cont.)**

Solutions

Static Scheduling

Dynamic Scheduling

Static Scheduling (Software)

Compiler reorganizes instructions

+ Simpler hardware

+ Can use more powerful algorithms

(Will see more later)

Dynamic Scheduling (Hardware)

Hardware reorganizes instructions

+ Handles dependences unknown at compile time

+ Software is more portable

Dynamic Scheduling - Basics (Cont.)

In-order execution - Static

Instructions sent to execution units sequentially

Stall instruction i + 1 if instruction i stalls for lack of operands

Out-of-order execution - Dynamic

Send independent instructions to execution units as soon as

possible

Dynamic Scheduling Basics (Cont.)

Original simple pipeline

ID – decode, check all hazards, read operands

EX – execute

Dynamic pipeline

Split ID (“issue to execution unit”) into two parts

Check for structural hazards

Wait for data dependences

New organization (conceptual):

Issue – decode, check structural hazards, read ready

operands

ReadOps – wait until data hazards clear, read operands, begin

execution

Issue stays in-order; ReadOps/beginning of EX is out-of-order

Dynamic Scheduling Basics (Cont.)**

Original simple pipeline

ID – decode, check all hazards, read operands

EX – execute

Dynamic pipeline

Split ID (“issue to execution unit”) into two parts

Check for structural hazards

Wait for data dependences

New organization (conceptual):

Issue – decode, check structural hazards, read ready

operands

ReadOps – wait until data hazards clear, read operands, begin

execution

Issue stays in-order; ReadOps/beginning of EX is out-of-order
Dispatch

Issue

Dynamic Scheduling Basics (Cont.)

Dynamic scheduling can create WAW, WAR hazards, and imprecise

exceptions

WAW hazards with dynamic scheduling

DIV.D F0, F2, F4

ADD.D F10, F0, F8

MUL.D F10, F8, F14

WAR hazards with dynamic scheduling

DIV.D F0, F2, F4

ADD.D F10,F0, F8

MUL.D F8, F8, F14

Can always stall,

but more aggressive solution with register renaming

Register Renaming - Tomasulo’s Algorithm

Registers are Names for data values

Think of register specifiers as tags

NOT storage locations

Tomasulo's algorithm exploited above in IBM 360/91

WAW hazards:

DIV.D F0, F2, F4

ADD.D F10, F0, F8

MUL.D F10, F8, F14

WAR hazards:

DIV.D F0, F2, F4

ADD.D F10, F0, F8

MUL.D F8, F8, F14

Some History - IBM 360/91

Fast 360 for scientific code

Completed in 1967

Predates cache memories

Pipelined, rather than multiple, functional units (FU)

We will assume multiple functional units

360 had register memory instructions, we don’t

Register Renaming - Tomasulo’s Algorithm

Tomasulo’s algm uses reservation stations for register renaming

Instruction is “issued” to a reservation station

A pending operand is designated via a tag

Tag = reservation station that will provide the operand

Reservation station with pending instruction fetches and buffers the

operand when it becomes available

All FUs place output on the common data bus (CDB) with tag

Waiting reservation station gets the data from the CDB (register

bypass)

Tomasulo’s Algorithm - Implementation

Extend simple pipeline as example for

Tomasulo's algorithm

Assume multiple FUs

Copyright © 2019, Elsevier Inc. All rights Reserved.

Figure 3.10 The basic structure of a RISC-V floating-point unit using Tomasulo's algorithm. Instructions are sent from the

instruction unit into the instruction queue from which they are issued in first-in, first-out (FIFO) order. The reservation stations include

the operation and the actual operands, as well as information used for detecting and resolving hazards. Load buffers have three

functions: (1) hold the components of the effective address until it is computed, (2) track outstanding loads that are waiting on the

memory, and (3) hold the results of completed loads that are waiting for the CDB. Similarly, store buffers have three functions: (1) hold

the components of the effective address until it is computed, (2) hold the destination memory addresses of outstanding stores that are

waiting for the data value to store, and (3) hold the address and value to store until the memory unit is available. All results from either

the FP units or the load unit are put on the CDB, which goes to the FP register file as well as to the reservation stations and store

buffers. The FP adders implement addition and subtraction, and the FP multipliers do multiplication and division.

Tomasulo’s Algorithm – Implementation**

Copyright © 2019, Elsevier Inc. All rights Reserved.

Our Tomasulo Pipeline

3-stage Execution (ignore IF and MEM)

Issue Get instruction from queue

ALU Op: Check for available reservation station

Load/Store: Check for available load/store buffer

If not, stall due to structural hazard

Execute If operands available, execute operation

If not, monitor CDB for operand

Write If CDB available, write it on CDB

If not, stall

Our Tomasulo Pipeline, cont

Reservation Stations

Handle distributed hazard detection and instruction control

Everything, except store buffers, has a tag

4-bit tag specifies reservation station or load buffer

Specifies which FU will produce result

Register specifier is used to assign tags

THEN IT'S DISCARDED!

Register specifers are ONLY used in ISSUE

Our Tomasulo Pipeline, cont

Reservation Stations

Op Opcode

Qj ,Qk Tag Fields

Vj ,Vk Operand values

Busy Currently in use

Register File and Store Buffer

Qi Tag Field

Busy Currently in use

Load and Store Buffers

Busy Currently in use

A Address

Latencies: FP+ = 2, FP* = 10, FP/ = 40, Load/int = 1

Tomasulo Example

Example code

L.D F6,34(R2)

L.D F2,45(R3)

MULT.D F0,F2,F4

SUB.D F8,F6,F2

DIV.D F10,F0,F6

ADD.D F10,F8,F2

ADD.D F6,F0, F2

Tomasulo Example

Instruction Status (for illustration only)

Instruction Issue Execute Write

L.D F6, 34(R2) 1 2 3

L.D F2, 45(R3) 2 3

MULT.D F0, F2, F4 3

SUB.D F8, F6, F2

DIV.D F10,F0, F6

ADD.D F10,F8, F2

ADD.D F6, F0, F2

FU Name Busy Op Vj Vk Qj Qk

1 Add1

2 Add2

3 Add3

4 Mult1 x * <F4> L2

5 Mult2

Register Result Status

F0 F2 F4 F6 F8 F10 F12 … F30

Qi *1 L2 L1

Busy x x x

Latencies:

FP+ = 2,

FP* = 10,

FP/ = 40,

Load/int = 1

Tomasulo Example

Instruction Status (for illustration only)

Instruction Issue Execute Write

L.D F6, 34(R2) 1 2 3

L.D F2, 45(R3) 2 3 4

MULT.D F0, F2, F4 3 5-14

SUB.D F8, F6, F2 4 5-6

DIV.D F10,F0, F6 5

ADD.D F10,F8, F2 6

ADD.D F6, F0, F2

FU Name Busy Op Vj Vk Qj Qk

1 Add1 x - <F6> <L2>

2 Add2 x + <F2> +1

3 Add3

4 Mult1 x * <L2> <F4>

5 Mult2 x / <F6> *1

Register Result Status

F0 F2 F4 F6 F8 F10 F12 … F30

Qi *1 +1 *2

Busy x x x

Latencies:

FP+ = 2,

FP* = 10,

FP/ = 40,

Load/int = 1

Tomasulo Example

Instruction Status (for illustration only)

Instruction Issue Execute Write

L.D F6, 34(R2) 1 2 3

L.D F2, 45(R3) 2 3 4

MULT.D F0, F2, F4 3 5-14

SUB.D F8, F6, F2 4 5-6 7

DIV.D F10,F0, F6 5

ADD.D F10,F8, F2 6

ADD.D F6, F0, F2 7

FU Name Busy Op Vj Vk Qj Qk

1 Add1 X

done

- <F6> <L2>

2 Add2 x + <+1> <F2> +1

3 Add3 x + <F2> *1

4 Mult1 x * <L2> <F4>

5 Mult2 x / <F6> *1

Register Result Status

F0 F2 F4 F6 F8 F10 F12 … F30

Qi *1 +3 +1 *2→+2

Busy x x x x

Latencies:

FP+ = 2,

FP* = 10,

FP/ = 40,

Load/int = 1

Tomasulo Example

Instruction Status (for illustration only)

Instruction Issue Execute Write

L.D F6, 34(R2) 1 2 3

L.D F2, 45(R3) 2 3 4

MULT.D F0, F2, F4 3 5-14 15

SUB.D F8, F6, F2 4 5-6 7

DIV.D F10,F0, F6 5 16-55 56

ADD.D F10,F8, F2 6 8-9 10

ADD.D F6, F0, F2 7 16-17 18

FU Name Busy Op Vj Vk Qj Qk

1 Add1

2 Add2

3 Add3

4 Mult1

5 Mult2

Register Result Status

F0 F2 F4 F6 F8 F10 F12 … F30

Qi

Busy

Latencies:

FP+ = 2,

FP* = 10,

FP/ = 40,

Load/int = 1

Tomasulo Example

Instruction Status (for illustration only)

Instruction Issue Execute Write

L.D F6, 34(R2) 1 2 3

L.D F2, 45(R3) 2 3 4

MULT.D F0, F2, F4 3 5-14 15

SUB.D F8, F6, F2 4 5-6 7

DIV.D F10,F0, F6 5 16-55 56

xxx F100,F10,F200 5.5 57

ADD.D F10,F8, F2 6 8-9 10

ADD.D F6, F0, F2 7 16-17 18

FU Name Busy Op Vj Vk Qj Qk

1 Add1

2 Add2

3 Add3

4 Mult1

5 Mult2

Register Result Status

F0 F2 F4 F6 F8 F10 F12 … F30

Qi

Busy

Latencies:

FP+ = 2,

FP* = 10,

FP/ = 40,

Load/int = 1

Tomasulo, cont.

Out-of-order loads and stores?

CDB is a bottleneck

Could duplicate

Increases the required hardware

Complex implementation

Tomasulo, cont**

Out-of-order loads and stores?

What about WAW, RAW, and WAR hazards?

Compare all load addresses w/ address in store buffers

Compare all store addresses w/ address in load/store buffers

Stall if they match

CDB is a bottleneck

Could duplicate

Increases the required hardware

Complex implementation

Advantages

Distribution of hazard detection

Elimination of WAR and WAW stalls

Common Data Bus

+ Broadcasts results to multiple instructions, bypasses registers

- Central bottleneck

Could duplicate (increases required hardware)

Register Renaming

+ Eliminates WAR and WAW Hazards

+ Allows dynamic loop unrolling

Especially important with only 4 registers

- Requires many associative lookups

Tomasulo, cont.

Loops with Tomasulo’s Algorithm

Consider the following example:

FORTRAN:

DO I = 1, N

C[I] = A[I] + s * B[I]

ASSEMBLY:

L.D F0, A(R1)

L.D F2, B(R1)

MUL.D F2, F2, F4 /* s in F4 */

ADD.D F2, F2, F0

S.D C(R1), F2

Branch code

What would Tomasulo’s algorithm do?

