
Chapter 3 – Instruction-Level Parallelism and 

its Exploitation (Part 1)

ILP vs. Parallel Computers

Dynamic Scheduling (Section 3.4, 3.5)

Dynamic Branch Prediction (Section 3.3, 3.9, and Appendix C)

Hardware Speculation and Precise Interrupts (Section 3.6)

Multiple Issue (Section 3.7)

Static Techniques (Section 3.2, Appendix H)

Limitations of ILP

Multithreading (Section 3.11)

Putting it Together (Mini-projects)



ILP vs. Parallel Computers

Instruction-Level Parallelism (ILP) 

Instructions of single process (or thread) executed in parallel 

Parallel components must appear to execute in sequential 

program order 

Parallel Computers or Multiprocessors 

Program divided into multiple processes (or threads) 

Instructions of multiple threads executed in parallel 

Typically also involves ILP within each thread 

No a priori sequential order between parallel threads 



Dynamic Scheduling - Basics

The situation: 

DIV.D F0, F2, F4 

ADD.D F10, F0, F8 

MULT.D F6, F6, F14

The problem: 

ADD stalls due to RAW hazard 

MULT stalls because ADD stalls 

Example 

1   2   3   4   5   6   7   8 

DIV.D IF  ID  E/  E/  E/  E/  MEM WB 

ADD.D     IF  ID  **  **  **  E+  E+ 

MULT.D        IF  **  **  **  ID  E* why stall?

In-order execution limits performance



Dynamic Scheduling - Basics (Cont.)

Solutions 

Static Scheduling 

Dynamic Scheduling 

Static Scheduling (Software) 

Compiler reorganizes instructions 

+

+

(Will see more later) 

Dynamic Scheduling (Hardware) 

Hardware reorganizes instructions 

+

+
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Dynamic Scheduling - Basics (Cont.)**

Solutions 

Static Scheduling 

Dynamic Scheduling 

Static Scheduling (Software) 

Compiler reorganizes instructions 

+ Simpler hardware 

+ Can use more powerful algorithms 

(Will see more later) 

Dynamic Scheduling (Hardware) 

Hardware reorganizes instructions 

+ Handles dependences unknown at compile time 

+ Software is more portable



Dynamic Scheduling - Basics (Cont.)

In-order execution - Static 

Instructions sent to execution units sequentially 

Stall instruction i + 1 if instruction i stalls for lack of operands

Out-of-order execution - Dynamic 

Send independent instructions to execution units as soon as 

possible 



Dynamic Scheduling Basics (Cont.)

Original simple pipeline 

ID – decode, check all hazards, read operands 

EX – execute 

Dynamic pipeline

Split ID (“issue to execution unit”) into two parts 

Check for structural hazards 

Wait for data dependences

New organization (conceptual):

Issue – decode, check structural hazards, read ready 

operands 

ReadOps – wait until data hazards clear, read operands, begin 

execution 

Issue stays in-order; ReadOps/beginning of EX is out-of-order



Dynamic Scheduling Basics (Cont.)**

Original simple pipeline 

ID – decode, check all hazards, read operands 

EX – execute 

Dynamic pipeline

Split ID (“issue to execution unit”) into two parts 

Check for structural hazards 

Wait for data dependences

New organization (conceptual):

Issue – decode, check structural hazards, read ready 

operands 

ReadOps – wait until data hazards clear, read operands, begin 

execution 

Issue stays in-order; ReadOps/beginning of EX is out-of-order
Dispatch

Issue



Dynamic Scheduling Basics (Cont.)

Dynamic scheduling can create WAW, WAR hazards, and imprecise 

exceptions

WAW hazards with dynamic scheduling 

DIV.D  F0, F2, F4 

ADD.D  F10, F0, F8 

MUL.D  F10, F8, F14 

WAR hazards with dynamic scheduling 

DIV.D  F0, F2, F4 

ADD.D  F10,F0, F8 

MUL.D  F8, F8, F14 

Can always stall,

but more aggressive solution with register renaming



Register Renaming - Tomasulo’s Algorithm

Registers are Names for data values 

Think of register specifiers as tags

NOT storage locations

Tomasulo's algorithm exploited above in IBM 360/91

WAW hazards:

DIV.D  F0,  F2, F4 

ADD.D  F10, F0, F8 

MUL.D  F10, F8, F14 

WAR hazards:

DIV.D  F0,  F2, F4 

ADD.D  F10, F0, F8 

MUL.D  F8,  F8, F14 



Some History - IBM 360/91

Fast 360 for scientific code 

Completed in 1967 

Predates cache memories 

Pipelined, rather than multiple, functional units (FU) 

We will assume multiple functional units

360 had register memory instructions, we don’t



Register Renaming - Tomasulo’s Algorithm 

Tomasulo’s algm uses reservation stations for register renaming

Instruction is “issued” to a reservation station

A pending operand is designated via a tag

Tag = reservation station that will provide the operand

Reservation station with pending instruction fetches and buffers the 

operand when it becomes available

All FUs place output on the common data bus (CDB) with tag

Waiting reservation station gets the data from the CDB (register 

bypass)



Tomasulo’s Algorithm - Implementation

Extend simple pipeline as example for 

Tomasulo's algorithm 

Assume multiple FUs

Copyright © 2019, Elsevier Inc. All rights Reserved.



Figure 3.10 The basic structure of a RISC-V floating-point unit using Tomasulo's algorithm. Instructions are sent from the 

instruction unit into the instruction queue from which they are issued in first-in, first-out (FIFO) order. The reservation stations include 

the operation and the actual operands, as well as information used for detecting and resolving hazards. Load buffers have three 

functions: (1) hold the components of the effective address until it is computed, (2) track outstanding loads that are waiting on the 

memory, and (3) hold the results of completed loads that are waiting for the CDB. Similarly, store buffers have three functions: (1) hold 

the components of the effective address until it is computed, (2) hold the destination memory addresses of outstanding stores that are 

waiting for the data value to store, and (3) hold the address and value to store until the memory unit is available. All results from either 

the FP units or the load unit are put on the CDB, which goes to the FP register file as well as to the reservation stations and store 

buffers. The FP adders implement addition and subtraction, and the FP multipliers do multiplication and division.

Tomasulo’s Algorithm – Implementation**

Copyright © 2019, Elsevier Inc. All rights Reserved.



Our Tomasulo Pipeline

3-stage Execution (ignore IF and MEM) 

Issue Get instruction from queue 

ALU Op: Check for available reservation station 

Load/Store: Check for available load/store buffer 

If not, stall due to structural hazard 

Execute If operands available, execute operation 

If not, monitor CDB for operand 

Write If CDB available, write it on CDB 

If not, stall



Our Tomasulo Pipeline, cont

Reservation Stations 

Handle distributed hazard detection and instruction control 

Everything, except store buffers, has a tag

4-bit tag specifies reservation station or load buffer 

Specifies which FU will produce result 

Register specifier is used to assign tags 

THEN IT'S DISCARDED! 

Register specifers are ONLY used in ISSUE



Our Tomasulo Pipeline, cont

Reservation Stations 

Op Opcode 

Qj ,Qk Tag Fields 

Vj ,Vk Operand values 

Busy Currently in use 

Register File and Store Buffer 

Qi Tag Field 

Busy Currently in use 

Load and Store Buffers 

Busy Currently in use

A                Address

Latencies: FP+ = 2, FP* = 10, FP/ = 40, Load/int = 1



Tomasulo Example

Example code 

L.D    F6,34(R2) 

L.D    F2,45(R3) 

MULT.D F0,F2,F4 

SUB.D  F8,F6,F2 

DIV.D  F10,F0,F6 

ADD.D  F10,F8,F2

ADD.D  F6,F0, F2



Tomasulo Example

Instruction Status (for illustration only)

Instruction Issue Execute Write

L.D F6, 34(R2) 1 2 3

L.D F2, 45(R3) 2 3

MULT.D F0,  F2, F4 3

SUB.D F8,  F6, F2

DIV.D F10,F0, F6

ADD.D F10,F8, F2

ADD.D F6,  F0, F2

FU Name Busy Op Vj Vk Qj Qk

1 Add1

2 Add2

3 Add3

4 Mult1 x * <F4> L2

5 Mult2

Register Result Status

F0 F2 F4 F6 F8 F10 F12 … F30

Qi *1 L2 L1

Busy x x x

Latencies: 

FP+ = 2, 

FP* = 10, 

FP/ = 40, 

Load/int = 1



Tomasulo Example

Instruction Status (for illustration only)

Instruction Issue Execute Write

L.D F6, 34(R2) 1 2 3

L.D F2, 45(R3) 2 3 4

MULT.D F0,  F2, F4 3 5-14

SUB.D F8,  F6, F2 4 5-6

DIV.D F10,F0, F6 5

ADD.D F10,F8, F2 6

ADD.D F6,  F0, F2

FU Name Busy Op Vj Vk Qj Qk

1 Add1 x - <F6> <L2>

2 Add2 x + <F2> +1

3 Add3

4 Mult1 x * <L2> <F4>

5 Mult2 x / <F6> *1

Register Result Status

F0 F2 F4 F6 F8 F10 F12 … F30

Qi *1 +1 *2

Busy x x x

Latencies: 

FP+ = 2, 

FP* = 10, 

FP/ = 40, 

Load/int = 1



Tomasulo Example

Instruction Status (for illustration only)

Instruction Issue Execute Write

L.D F6, 34(R2) 1 2 3

L.D F2, 45(R3) 2 3 4

MULT.D F0,  F2, F4 3 5-14

SUB.D F8,  F6, F2 4 5-6 7

DIV.D F10,F0, F6 5

ADD.D F10,F8, F2 6

ADD.D F6,  F0, F2 7

FU Name Busy Op Vj Vk Qj Qk

1 Add1 X 

done

- <F6> <L2>

2 Add2 x + <+1> <F2> +1

3 Add3 x + <F2> *1

4 Mult1 x * <L2> <F4>

5 Mult2 x / <F6> *1

Register Result Status

F0 F2 F4 F6 F8 F10 F12 … F30

Qi *1 +3 +1 *2→+2

Busy x x x x

Latencies: 

FP+ = 2, 

FP* = 10, 

FP/ = 40, 

Load/int = 1



Tomasulo Example

Instruction Status (for illustration only)

Instruction Issue Execute Write

L.D F6, 34(R2) 1 2 3

L.D F2, 45(R3) 2 3 4

MULT.D F0,  F2, F4 3 5-14 15

SUB.D F8,  F6, F2 4 5-6 7

DIV.D F10,F0, F6 5 16-55 56

ADD.D F10,F8, F2 6 8-9 10

ADD.D F6,  F0, F2 7 16-17 18

FU Name Busy Op Vj Vk Qj Qk

1 Add1

2 Add2

3 Add3

4 Mult1

5 Mult2

Register Result Status

F0 F2 F4 F6 F8 F10 F12 … F30

Qi

Busy

Latencies: 

FP+ = 2, 

FP* = 10, 

FP/ = 40, 

Load/int = 1



Tomasulo Example

Instruction Status (for illustration only)

Instruction Issue Execute Write

L.D F6, 34(R2) 1 2 3

L.D F2, 45(R3) 2 3 4

MULT.D F0,  F2, F4 3 5-14 15

SUB.D F8,  F6, F2 4 5-6 7

DIV.D F10,F0, F6 5 16-55 56

xxx F100,F10,F200 5.5 57

ADD.D F10,F8, F2 6 8-9 10

ADD.D F6,  F0, F2 7 16-17 18

FU Name Busy Op Vj Vk Qj Qk

1 Add1

2 Add2

3 Add3

4 Mult1

5 Mult2

Register Result Status

F0 F2 F4 F6 F8 F10 F12 … F30

Qi

Busy

Latencies: 

FP+ = 2, 

FP* = 10, 

FP/ = 40, 

Load/int = 1



Tomasulo, cont.

Out-of-order loads and stores? 

CDB is a bottleneck 

Could duplicate 

Increases the required hardware 

Complex implementation



Tomasulo, cont**

Out-of-order loads and stores? 

What about WAW, RAW, and WAR hazards? 

Compare all load addresses w/ address in store buffers 

Compare all store addresses w/ address in load/store buffers

Stall if they match 

CDB is a bottleneck 

Could duplicate 

Increases the required hardware 

Complex implementation



Advantages

Distribution of hazard detection

Elimination of WAR and WAW stalls

Common Data Bus

+ Broadcasts results to multiple instructions, bypasses registers

- Central bottleneck

Could duplicate (increases required hardware)

Register Renaming

+ Eliminates WAR and WAW Hazards

+ Allows dynamic loop unrolling

Especially important with only 4 registers

- Requires many associative lookups

Tomasulo, cont.



Loops with Tomasulo’s Algorithm

Consider the following example: 

FORTRAN: 

DO I = 1, N 

C[I] = A[I] + s * B[I] 

ASSEMBLY: 

L.D F0, A(R1) 

L.D F2, B(R1) 

MUL.D F2, F2, F4 /* s in F4 */ 

ADD.D F2, F2, F0 

S.D C(R1), F2 

Branch code

What would Tomasulo’s algorithm do?


