
Chapter 2: Memory Hierarchy Design

Introduction (Section 2.1, Appendix B)

Caches

Review of basics (Section 2.1, Appendix B)

Advanced methods

Main Memory

Virtual Memory

Memory Hierarchies: Key Principles

Make the common case fast

Common → Principle of locality

Fast → Smaller is faster

Principle of Locality

Temporal locality

Spatial locality

Examples:

Smaller is Faster

Registers are fastest memory

Smallest and most expensive

Static RAMs are faster than DRAMs

10X faster

10X less dense

DRAMs are faster than disk, flash

Memory Hierarchy

Registers

Cache

Memory

Disk

Type Size Speed (x proc. clk)

Registers

Cache

Memory

Disk, Flash

© 2019 Elsevier Inc. All rights reserved. 6

Figure 2.1 The levels in a typical memory hierarchy in a personal mobile device (PMD), such as a cell phone or tablet (A), in
a laptop or desktop computer (B), and in a server (C). As we move farther away from the processor, the memory in the level
below becomes slower and larger. Note that the time units change by a factor of 109 from picoseconds to milliseconds in the case of
magnetic disks and that the size units change by a factor of 1010 from thousands of bytes to tens of terabytes. If we were to add
warehouse-sized computers, as opposed to just servers, the capacity scale would increase by three to six orders of magnitude.
Solid-state drives (SSDs) composed of Flash are used exclusively in PMDs, and heavily in both laptops and desktops. In many
desktops, the primary storage system is SSD, and expansion disks are primarily hard disk drives (HDDs). Likewise, many servers
mix SSDs and HDDs.

Memory Hierarchy Terminology

Block

Minimum unit that may be present

Usually fixed length

Hit – Block is found in upper level

Miss – Not found in upper level

Miss ratio – Fraction of references that miss

Hit Time – Time to access the upper level

Miss Penalty

Time to replace block in upper level, plus the time to deliver the

block to the CPU

Access time – Time to get first word

Transfer time – Time for remaining words

Memory Address

Block Names

Cache: Line

VM: Page

Memory Hierarchy Terminology

Blockframe address Offset

 0101010101010101011 01010101

Memory Hierarchy Performance

Indirect measures of time can be misleading

MIPS can be misleading

So can Miss ratio

Average (effective) access time is better

tavg =

Example:

thit = 1

tmiss = 20

miss ratio = .05

tavg =

Effective access time is still an indirect measure

Example

Poor question:

Q: What is a reasonable miss ratio?

A: 1%, 2%, 5%, 10%, 20% ???

A better question

Q: What is a reasonable tavg ?

(assume tcache = 1 cycle, tmemory = 20 cycles)

A: 1.2, 1.5, 2.0 cycles

What's a reasonable tavg ?

Example, cont.

Rearranging terms in

tavg = tcache + miss ratio tmemory

to solve for miss ratios yields

miss =

Reasonable miss ratios (percent) - assume tcache = 1

Proportional to acceptable tavg degradation

Inversely proportional to tmemory

(tavg -tcache)

tmemory

tavg (cycles) tmemory

(cycles)
1.2 1.5 2.0

2 10.0 25.0 50.0

20 1.0 2.5 5.0

200 0.1 0.25 0.5

Basic Cache Questions

Block placement

Where can a block be placed in the cache?

Block Identification

How is a block found in the cache?

Block replacement

Which block should be replaced on a miss?

Write strategy

What happens on a write?

Cache Type

What type of information is stored in the cache?

Block Placement

FullyAssociative

Block goes in any block frame

Directmapped

Block goes in exactly one block frame

(Block frame #) mod (# of blocks)

SetAssociative

Block goes in exactly one set

(Block frame #) mod (# of sets)

Example: Consider cache with 8 blocks, where does block 12 go?

Block Identification

How to find the block?

Tag comparisons

Parallel search to speed lookup

Check valid bit

Example: Where do we search for block 12?

Example Cache

Block Replacement

Which block to replace on a miss?

Least recently used (LRU)

Optimize based on temporal locality

Replace block unused for longest time

State updates on nonMRU misses

Random

Select victim at random

Nearly as good as LRU, and easier

First-in First-out (FIFO)

Replace block loaded first

Optimal

?

Write Policies

Writes are harder

Reads done in parallel with tag compare; writes are not

Thus, writes are often slower

(but processor need not wait)

On hits, update memory?

Yes writethrough (storethrough)

No writeback (storein, copyback)

On misses, allocate cache block?

Yes write-allocate (usually used w/ writeback)

No no-write-allocate (usually used w/ writethrough)

Write Policies, cont.

WriteBack

Update memory only on block replacement

Dirty bits used so clean blocks can be replaced without updating

memory

Traffic/Reference =

Traffic/Reference =

Less traffic for larger caches

WriteThrough

Update memory on each write

Write buffers can hide write latency (later)

Keeps memory uptodate (almost)

Traffic/Reference =

Cache Type

Unified (mixed)

Less costly

Dynamic response

Handles writes into Istream

Separate Instruction & Data (split, Harvard)

2x bandwidth

Place closer to I and D ports

Can customize

Poor person's associativity

No interlocks on simultaneous requests

Caches should be split if simultaneous instruction and data

accesses are frequent (e.g., RISCs)

Cache Type Example

Consider building (a)16K byte I & D caches, or (b) a 32K byte

unified cache.

Let tcache is one cycle, tmemory is 10 cycles.

(a) Imiss is 5 %, Dmiss is 6 %, 75 % of references are instruction

fetches.

tavg =

(b) miss ratio is 4 %

tavg =

A Miss Classification (3Cs or 4Cs)

Cache misses can be classified as:

Compulsory (a.k.a. cold start)

The first access to a block

Capacity

Misses that occur when a replaced block is re-referenced

Conflict (a.k.a. collision)

Misses that occur because blocks are discarded because of the

set-mapping strategy

Coherence (shared-memory multiprocessors)

Misses that occur because blocks are invalidated due to

references by other processors

