
Chapter 1: Fundamentals of Computer Design (Part 2)

What is computer architecture?

Why study computer architecture?

Common principles

Performance

What is performance: latency, throughput

The performance equation

Measuring performance

Improving performance: parallelism, locality, Amdahl's law

Power

Cost

Reliability

What is Performance?

Two Metrics

Latency (or response time or execution time)

Throughput (or bandwidth)

What is Performance?**

Two Metrics

Latency (or response time or execution time)

Time from start to finish of a task

Throughput (or bandwidth)

What is Performance?**

Two Metrics

Latency (or response time or execution time)

Time from start to finish of a task

Throughput (or bandwidth)

Rate of task completion

= Rate of task initiation

= 1 / (time between task completions)

What is Performance?**

Two Metrics

Latency (or response time or execution time)

Time from start to finish of a task

Throughput (or bandwidth)

Rate of task completion

= Rate of task initiation

= 1 / (time between task completions)

Example: Automobile assembly line starts one car per hour and

holds 20 cars

Latency = 20 hours

Throughput = one car per hour

Throughput > 1/Latency due to overlap

Performance (Cont.)

Definition: X is n% faster than Y if

Example: X = 1 minute, Y = 2 minutes

X is 100% faster than Y

Execution TimeY

Execution TimeX

n

100
= 1 +

Key Performance Equation

Instructions per program (path length)

ISA and compiler

Cycles per instruction (CPI)

ISA and organization (e.g., cache misses)

Time per cycle (clock time, cycle time)

Organization and hardware

CPUtime = X X
instructions cycles time

program instruction cycle

Measuring Performance

MIPS, MFLOPS don't mean much

Benchmarks

Real programs

Representative of real workload

Only way to characterize performance

SPEC89 → SPEC92 → SPEC95 → SPEC CPU2000 → CPU2006 →

CPU2017

SPECFS, SPECWeb, SPECjbb, SPECvirt_Sc2010, TPC

Kernels

``Representative'' program fragments

Often not representative of full applications

EEMBC for embedded systems

Toy benchmarks and synthetic benchmarks

Don't mean much

Improving Performance – Basic Principles

Parallelism

Locality

Focus on common case – Amdahl’s law

Improving Performance – Basic Principles**

Parallelism

Pipelining (review next)

Multiple issue

Multiprocessors

Locality

Focus on common case – Amdahl’s law

Improving Performance – Basic Principles**

Parallelism

Pipelining (review next)

Multiple issue

Multiprocessors

Locality

Caches (review later)

Focus on common case – Amdahl’s law

Amdahl's Law

(Or why the common case matters most)

Let

Consider an enhancement x that speeds up fraction fx of a task by Sx

Amdahl’s law gives

Speedup = =
new rate old latency

old rate new latency

Speedupoverall =
old latency

new latency

=
{(1 - fx) + (fx)} old latency

(1 - fx) old latency + fx /Sx old latency

Speedupoverall =
1

(1 - fx)+ fx /Sx

Amdahl's Law, cont.

Example: fx = 95% and Sx = 1.10

Example: fx = 5% and Sx = 10

Example: fx = 5% and Sx =

Speedupoverall = = 1.094
1

(1 - 0.95) + (0.95/1.10)

Speedupoverall = = 1.047
1

(1 - 0.05) + (0.05/10)

Speedupoverall = = 1.052
1

(1 - 0.05) + (0.05/)

Amdahl's Law Corollary

Since Sx → implies Example

For all real speedups:

Or make the common case fast

An application?

Speedupoverall =
1

(1 - fx)+ (fx /)

Speedupoverall <
1

1 - fx

fx 1/(1-fx)

1% 1.01

2% 1.02

5% 1.05

10% 1.11

20% 1.25

50% 2.00

Power

Power

Energy

Temperature

Power**

Power = Voltage x Current

Energy = Power x Time

Temperature = Complex function of power, determined by max

power drawn (averaged over short intervals)

Power and Energy

Power = Dynamic power + Static power

Energy = Power * Time

Dynamic Power Capacitance * Voltage2 * Frequency

Static power = Static current * Voltage

Power and Energy**

Power = Dynamic power + Static power

Energy = Power * Time

Dynamic Power Capacitance * Voltage2 * Frequency

Clock gating reduces switching to reduce power

Reducing voltage reduces power

But also requires reducing frequency

Increases execution time

But reduction in power (and energy) more than increase in time

Dynamic voltage-frequency scaling (DVFS)

Static power = Static current * Voltage

Power gating reduces static (and dynamic) power

System strategy for energy: Race-to-halt

New reality: Dark Silicon

Growth in Clock Rate

Figure 1.11 Growth in clock rate of microprocessors in Figure 1.1. Between 1978 and 1986, the clock rate improved less than

15% per year while performance improved by 22% per year. During the “renaissance period” of 52% performance improvement per

year between 1986 and 2003, clock rates shot up almost 40% per year. Since then, the clock rate has been nearly flat, growing at

less than 2% per year, while single processor performance improved recently at just 3.5% per year.

© 2019 Elsevier Inc. All rights reserved.

Cost

Cost is very important in most real designs

But usually hard to quantify for the architect

Costs change over time

Learning curve lowers manufacturing costs

Technology improvements lower costs

Focus on IC costs next

Copyright © 2011, Elsevier Inc. All rights Reserved.

Figure 1.15 This 300 mm wafer contains 280 full Sandy Bridge dies, each 20.7 by 10.5 mm in a 32 nm process. (Sandy

Bridge is Intel’s successor to Nehalem used in the Core i7.) At 216 mm2, the formula for dies per wafer estimates 282.

(Courtesy Intel.)

A Wafer

© 2019 Elsevier Inc. All rights reserved.

A Die

Figure 1.14 Photograph of an Intel Skylake microprocessor die, which is evaluated in Chapter 4.

© 2019 Elsevier Inc. All rights reserved.

A Die with Parts Labeled

Figure 1.15 The components of the microprocessor die in Figure 1.14 are labeled with their functions.

Integrated Circuit Cost

Cost of IC =
Cost of Die+ Cost of Testing + Cost of Packaging

Final Test Yield

Cost of Die =
Cost of Wafer

Dies per Wafer Die Yield

Dies per Wafer = () –
 (Wafer Diameter/2)2

Die Area

Die Yield = Wafer Yield
1

(1 + Defects per unit area Die Area)

= 10 to 14 for 16nm in 2017

Bottom line: Cost per die grows roughly as the square of the die area

Cost different from price; cost of manufacturing different from cost of operation

(Correction factor for Edge Effects)

Reliability

Many sources of unreliability

Soft errors due to radiation, hard errors due to wearout, …

Common metrics

Mean time to failure – MTTF

For exponentially distributed time to failure

Define failures in time or FITs

FIT = failures in a billion hours

FIT α 1/MTTF

FIT of system = Sum of FITs of components

Common solution

Reliability**

Many sources of unreliability

Soft errors due to radiation, hard errors due to wearout, …

Common metrics

Mean time to failure – MTTF

For exponentially distributed time to failure

Define failures in time or FITs

FIT = failures in a billion hours

FIT α 1/MTTF

FIT of system = Sum of FITs of components

Common solution

Redundancy in time, space, information

But must be cheap

Many recent innovations

