
CS 433 – Final Exam – Dec 19, 2018 

 

Student name: 

Netid: 

Grad or undergad: 
 
Instructions 
 

1. Connect to the exam zoom room before you download the exam from compass. Set your 

camera as instructed - with your hands, face, and the screen of the device you use to 

write your solutions visible on zoom - from before you download the exam to after you 

submit it on compass. 

2. The exam is designed to be solved within three hours. 

3. No books, papers, notes, or any other typed or written materials are allowed. No 

calculators or other electronic materials are allowed.  

4. Download the exam from compass 2g and save a copy on your device. It is acceptable 

to convert the word file into a google doc. Type your answers on the saved file/google 

doc (start by typing your name, netid, and grad/undergrad status above). Try to keep 

your answer within the space provided if possible. After you finish editing the document 

with your solutions, please save it, convert it to pdf, and upload the pdf back to Compass. 

5. In all cases, show your work. No credit will be given if there is no indication of how the 

answer was derived. Partial credit will be given even if your final solution is incorrect, 

provided you show the intermediate steps in reaching the final solution. 

6. If you believe a problem is incorrectly or incompletely specified, make a reasonable 

assumption and solve the problem. The assumption should not result in a trivial solution. 

In all cases, clearly state any assumptions that you make in your answers. 

7. If you need to ask a question, please use the “raise hand” feature on zoom or send a 

private message on zoom chat to Antonio and we will take you to a breakout room. 

8. This exam solution has 6 problems and 14 pages (including this one). Only graduate students 

should solve problems 2F, 2G, and 5B. All students should solve the rest of the problems. 

Please budget your time appropriately. Good luck! 
 

Problem Maximum Points Received Points 

1 11  
2 14 (undergrads), 20  

 (grads)  

3 8  

4 8  

5 6 (undergrads), 11 (grads)  

6 5  

Total 52 (undergrads), 63 (grads)  
   

 
 



Problem 1 [11 points]: 
 
Consider a computer with a memory system with 16 bits for physical address, 32 bits for virtual address, 

page size of 4KB, 16 bit words, and word (16 bit) addressable memory. The computer system contains a 

32KB data cache that is virtually indexed and physically tagged. The data cache is 8-way set associative 

and the cache line size is 16 words. 

 

Part A [2 points]: 
 
Specify what bit ranges of the address (virtual or physical) comprise the virtual page number and the 

physical page frame number. How many physical and virtual pages does this system have? 
 
Solution:  
Since 4KB is 2**11 words (for 16 bit words), 11 bits are needed as the offset within a page. So bits 11:31 

of the virtual address are the virtual page number, and bits 11:15 of a physical address are the physical page 

number. There are 2^21 virtual pages, and 2^5 physical pages. 
 
Grading:  
0.5 point for each of the following: the bit ranges of the page number in the virtual address, the bit ranges of the 

page number in the physical address, the number of physical pages, and the number of virtual pages. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Part B [3 points]: 
 
Assume each Page Table Entry (PTE) has 5 state bits (dirty bit, protection bits, etc.) in addition to the 

address translation. How many bits does each PTE consume? How much memory, in bytes, does the 

bookkeeping for all the virtual pages consume? Assume only one level of page translation (as discussed in 

class) and assume each page table entry is word aligned. 

 

Solution:  
A PTE has 5 bits of the physical page number in addition to the 5 state bits. This makes a total of 10 bits 

which fits in one 16 bit word. Each mapping therefore takes one word. There are 2^21 mappings. Therefore, 

the page tables take up 4MB. 
 
Grading:  
1 point for the size in bits of a PTE. 1 point for the total number of PTEs. 0.5 point for rounding up the PTE 

size to a multiple of word size and 0.5 point for expressing the final answer as the product of the number 

and size of PTEs. 
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Part C [3 points]  
Specify what bit ranges within the virtual or physical address (whichever is appropriate) comprise the cache 

index and cache tag bits. State explicitly whether the bits used are from the physical or virtual address. 

 
 

Solutions:  
There are 32KB / 2 bytes per word / 16 words per line / 8 lines per set = 2^7 sets. The index needs 7 bits. The 

cache is virtually indexed, so the bits are taken from the virtual address. The offset within a cache line is 4 bits, 

so bits 4:10 are used for the index. However, the page size is 2^11 words, so these bits will be the same in the 

physical address as well. The tag is the remaining bits of the physical address, bits11:15. 
 
Grading:  
1.5 points for each answer. ½ point for correct number of bits, ½ point for correct range of bits, and ½ 

point for specifying virtual or physical address. 
 
 
 
 
 
 
 

 

Part D [3 points] 
 
If the architect were to decrease the cache associativity to 4-way, what would the cache index bits be then? 

Would this create a problem for the Virtually Indexed/Physically Tagged caching scheme? If so, describe 

the problem and a hardware-only way of solving it that does not require waiting for address translation 

before indexing the cache. 
 
 

Solution: 
 
If the cache were only 4-way associative, there would be 256 sets. Then the cache index would be 8 bits 

long, and use bits 4:11 of an address. If these bits are taken from the virtual address, bit 11 is part of the 

virtual page number. If two arbitrary virtual pages are allowed to map to the same physical page, then these 

two virtual addresses could have different index bits. One solution is that while indexing, the cache should 

assume bit 11 could be 0 or 1 and look for the data in the two corresponding sets in parallel (i.e., in 8 total 

ways) Assuming the translation completes in the time that these ways are accessed, the correct way can be 

determined once the data is accessed. 
 
Grading: 
 
½ point for giving the range of index bits. 1 point for noticing and explaining how this makes aliasing 

problematic. 1.5 points for a correct hardware only solution (software-only solutions like prohibiting 

aliasing are not accepted, nor doing address translation before indexing). 
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Problem 2 [14 points for undergraduates, 20 points for graduates] 

 

ALL STUDENTS SHOULD SOLVE PARTS A TO E. ONLY GRADUATE STUDENTS SHOULD 

SOLVE PARTS F AND G. 
 
Data cache performance can be improved if a processor loads data into the cache before the program requests it. This 

prefetching requires predicting which data will soon be accessed. A simple strategy only prefetches on a cache miss, and 

loads the requested block as well as the following block (in address order). Consider the effect of this strategy on the 

memory accesses of the following programs, under the following assumptions for the data cache: 
 

• The cache block size is 16 bytes  
• Array entries are 4 bytes  
• Arrays are aligned so the first element is at the start of a cache block  
• The cache is initially empty  
• Local variables are stored in registers, not memory  
• The cache is sufficiently large that there will be no capacity misses  
• The cache is sufficiently large/associative that there will be no conflict misses  
• If a processor issues a load to an address that was previously prefetched, assume the prefetch already 

returned the block in the cache and the load will be a hit. 
 

For each program, give the number of data cache misses that will occur with and without next-line 

prefetching, and how much data will be loaded into the cache with and without next-line prefetching. 

 

Part A [3 points] 
 

for (int i = 0; i < 128; ++i) {  
a[i] = sin(a[i]);  

} 
 

Solution: 
 

128 words / 4 words/cache line = 32 cache lines. Without prefetching, there will be 32 misses. With prefetching, 

the misses will be halved; i.e., 16 misses. Either way, 128*4 = 512 bytes of data will be read into the cache. 

 

Grading: 1 point for number of misses without prefetching. 1 point for number of misses with prefetching. 1 

point for amount of loaded data. 

 

Part B [3 points] 
 

for (int i = 127; i >= 0; --i) {  
a[i] = sin(a[i]);  

} 
 

Solution: 
 

Prefetching goes in the wrong order, so both strategies incur 128/4 = 32 cache misses. The first prefetch on each 

array reads one unnecessary block, so with prefetching 128*4+16 = 528 bytes will be loaded. Without prefetching 
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only the blocks covering the array will be loaded, or 128*4 = 512 bytes. 
 

Grading: 1 point for number of misses. 1 point for amount of loaded data without prefetching. 1 point for amount 

of loaded data with prefetching. 

 

 

Part C [3 points] 
 

for (int i = 0; i < 128; ++i) {  
a[4*i]= sin(a[4*i]);  

} 
 
 

 

Solution: 
 

Here each access to a occurs to successive cache lines, in order. Without prefetching there will be 128 cache misses. 

With next-line prefetching there will be half as many misses, 128/2 = 64 cache misses. Either way, all cache blocks 

covering an accessed element of A will be loaded, and no unnecessary blocks will be prefetched, so a total of 

128*16 = 2048 bytes of data will be loaded. 
 

Grading: 1 point for number of misses without prefetching. 1 point for number of misses with prefetching. 1 

point for amount of loaded data. 

 
 
 

 

Part D [3 points] 
 

for (int i = 0; i < 128; ++i) {  
a[8*i] = sin(a[8*i]);  

} 
 

 

Solution: 
 

Now each access to a is sufficiently far apart that the prefetched lines will not even be used. With or without 

prefetching there will be 128 misses. Without prefetching only necessary blocks will be loaded, for a total of 128*16 
 
= 2048 bytes of data loaded. With prefetching twice as many blocks will be loaded, for a total of 2*128*16 = 

4096 bytes of data loaded. 
 

Grading: 1 point for number of misses. 1 point for amount of loaded data without prefetching. 1 point for 

amount of loaded data with prefetching. 

 
 
 
 
 
 
 
 
 

 

5 



Part E [2 points] 
 

Now consider software prefetching for the code in part D. Make the following additional assumptions: 
 

• Statements in the code are executed sequentially. The loop test takes 4 cycles per invocation. The assignment 

statement takes 20 cycles if there is no cache miss (those 20 cycles include multiplication to find the index, the 

load, the sin computation, and the store), and an additional 40 cycles if there is a data cache miss.  
• There is a data prefetch instruction with the format prefetch(array[index]). This prefetches the single block 

containing the word array[index] into the data cache. It takes 1 cycle for the processor to execute this instruction 

and send it to the data cache. The processor can then go ahead and execute subsequent instructions. If the data to 

be prefetched is not already in the cache, then it takes 40 cycles for the data to get loaded into the cache.  
• Assume the memory system can handle an infinite number of concurrent prefetches; e.g., the cache 

has infinite MSHRs.  
• The instruction cache is perfect; i.e., the hit rate is 100% and it can be ignored for this problem. 

 

Modify the code in part D to use software prefetching. Do not add startup or cleanup code. Given that restriction, 

avoid as many cache misses as possible. Additionally, write code that issues as few prefetches as possible, given 

the number of misses remaining. As always, be sure to explain your answer. 

 

Solution: 
 

Since the prefetch latency is 40 cycles and the computation takes 20 cycles in the best case, we need to 

prefetch two iterations ahead to completely hide the prefetch latency. 
 

for (int i = 0; i < 128; i++) { 

 

prefetch(a[8*i+16]); 
 

a[8*i] = sin(a[8*i]);  
} 
 

Grading: 1 point for having just one prefetch. 1 point for the correct address. 2 total points. 
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Part F [3 points] – ONLY GRADUATE STUDENTS SHOULD SOLVE THIS PROBLEM 

 

Describe the design for a hardware prefetcher that can handle all the cases from parts A – D. Your prefetcher 

must minimize both the number of misses and the amount of useless data that is prefetched. Assume the 

prefetcher is invoked only on loads. You have to explain the design only at a conceptual level (e.g., 

analogous to the level at which we explained branch predictors in the lecture); i.e., you do not need to show 

the actual circuitry. 

 
 

 

Solution: 
 

We need to add a predictor to the prefetcher that learns the stride of the misses and uses that stride to 

compute the prefetch address. This involves the following steps: 
 

(1) We need to keep track of the address of the last miss in an “address” register.  
(2) At the current miss, a simple subtractor can determine the difference between the address of the 

current miss and that of the last miss (stored in the address register). This difference (the stride) is stored in 

a “stride” register. Note that the stride can be positive or negative. 

(3) This stride value is then added to the address of the current miss and a prefetch to the computed 

address is issued. 
 

Grading: 1 point for each of the three steps above. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

7 



Part G [3 points] – ONLY GRADUATE STUDENTS SHOULD SOLVE THIS PROBLEM 

 

Now assume that the loops in parts A to D are modified so that they additionally traverse (with some 

constant stride) an array that is disjoint from array “a.” Does your prefetcher design for part F still work as 

well? If yes, explain why. If not, explain how you will modify it to make it work efficiently for the new 

loops. Credit will be given for this part only if a reasonable solution is provided for part F. 

 
 

 

Solution: 
 

The previous solution does not work well because the histories of the two array accesses interfere with each 

other. The predictor should be modified so that the address and stride are now stored in a table that is 

indexed by the program counter. 
 

Grading: 1 point for an explanation of whether the prefetcher from part F will or will not work. If the 

prefetcher from Part F already works for this case, then two additional points. If the prefetcher from part F 

does not work for this case, then 2 points for a modification to make it work correctly. 
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Problem 3 [8 points]: 
 

This question concerns a snooping update (as opposed to invalidate) cache coherence protocol. Consider 

a system where the processors are connected by a bus, the caches are write-back and write-allocate and 

cache coherence is maintained through a snooping update protocol called protocol X. In a snooping update 

protocol, when a cache modifies its data, it broadcasts the updated data bytes on a bus using a bus update 

transaction, if necessary. Memory and all caches that have a copy of that data then update their own copies. 

This is in contrast to the invalidation protocol discussed in class where a cache invalidates its copy in 

response to another processor’s write request to a block. 
 

Protocol X has three states – Valid-Exclusive (V-E), Dirty (D), and Shared (S). (Technically, there is also an 

Invalid state for an empty block, but since the protocol never sends an invalidation, this may be ignored.) 
 

The V-E state implies that this is the only cache to hold a copy of the block and that it is clean; i.e., main 

memory has an up to date copy of the block (for this problem, you do not have to worry about the 

mechanism used to determine if this cache has the only copy). V-E transitions to Shared when another 

processor performs a read. Shared implies that one or more caches contain a copy, and that all copies are 

clean. The Dirty state is analogous to the Modified state in the MSI invalidate protocol studied in class, in 

that this is the only copy cached, and that main memory is out of date. If memory has a clean copy of a line, 

then it will service any request for that line. 
 

Complete the following table, filling in the state transitions specifically for Processor 1’s cache and address 

A. Assume writeback caches with only one entry which begins empty. Include the new state of the line with 

address A in Processor 1’s cache for the MSI protocol studied in class and protocol X after each event 

shown, and note any bus traffic generated by Processor 1’s cache for MSI and X. Distinguish between 

writing a full line or just a word – assume all writes to A are word writes. Local access on A implies the 

access is initiated by processor 1 and bus access implies the access is initiated by another processor on the 

bus. Assume that these accesses occur in the order below, and that no other memory accesses / traffic occur. 

The first row is filled out. 
 
 

 MSI state Protocol External actions by External actions by 

 for block X state for Processor 1 for MSI Processor 1 for X 

Event A block A (say none if no action) (say none if no action) 

Local read A S V-E Read A on Bus Read A on Bus 

Local write A M D Invalidate None 

Bus read A S S Send line Send line 

Bus write A I S None None 

Local read A S S Read A on Bus None 

Local write A M S Invalidate Update word 

Bus read A S S Send line None 

Local write A M S Invalidate Update word 

Local write A M S None Update word 
 
Grading: 8 points. ¼ point each entry. No penalty for cascading errors 
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Problem 4 [8 points] 
 

Consider the following system S: 
 

• The system S contains a cache per processor that can contain shared read/write data. Cache coherence 

is maintained through an invalidation snooping protocol. 

• When a processor’s cache controller sees an invalidate on the bus for a line present in its cache, it buffers 

this invalidate in a local buffer. The bus is free for the next transaction as soon as such buffering is done. 

The cache controller will apply the invalidate to its cache line some time later (e.g., when the cache is 

not being used by the processor). It is also possible that the buffered invalidates are applied to a cache 

in an order different from the order in which they were received from the bus.  
• A processor is allowed to have multiple outstanding memory accesses and these accesses could occur 

out of program order.  
• An instruction called memory_barrier, denoted by MB, is provided with the following specification.  
• An MB by processor P is not issued until the following is true of all operations op of processor P that 

are before MB by program order:  
o if op is a read, then it has returned its value, and  
o if op is a write, then the invalidate for that write has been applied to all the cache lines with 

an older value.  
• Further, processor P does not issue any memory operation until all preceding MB instructions (by 

program order) have been issued. 
 

The memory consistency model of system S is not sequential consistency and does not impose 

any constraints on the ordering of loads and stores other than that due to the MB instruction. 

Answer the following two parts for the above system. 

 

 

Part A [4 points] 
 

Consider the following program. (Note: Operations in a vertical column are issued by the same processor, 

and appear in program order.) 
 

Initially X = Y = 0  
P1 P2 P3  
X = 1 tmp1 = X tmp2 = Y  

Y = 1 tmp3 = X 

 

Suppose processor P2’s read of X and processor P3’s read of Y both return the value 1. Then what values 

could processor P3’s read of X return on a sequentially consistent system? What values could it return on 

system S? 

 

Solution: 
 

Under sequential consistency, memory operations appear to execute atomically and in program order. Since 

we are told that P2's read of X and P3's read of Y both return the value 1, we can conclude that the order of 

memory operations as seen by the system is:  
(X = 1) → (tmp1 = X) → (Y = 1) → (tmp2 = Y) → (tmp3 = X). 
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Therefore, the read of X by P3 returns a 1. The above order is correct because of the following reasons: We 

are given that the read of X at P2 returns a 1. This implies that the write of 1 to X by P1 happened before 

it. The store to Y by P2 comes after reading X in program order. The same store happens before the read of 

Y on P3 since we are told that the read of Y at P3 returns a 1. Finally, the read of X by P3 occurs after the 

read of Y in program order and therefore appears after it in the system. 
 

On system S, since there are no guarantees on the order in which loads and stores are executed by each 

processor, P3 could either read a 0 or a 1 for the value of X. 

 

Grading: 2 points for the answer about sequentially consistent system and 2 points for the answer for the 

hypothetical system. 

 
 
 
 
 

 

Part B [4 points] 
 

The designers of system S claim that S is simple to program because programmers who want sequential 

consistency can simply put MB instructions before and after every memory operation to get sequential 

consistency. Is the italicized statement true? If not, why not and how would you modify system S to make 

the statement true? 

 

Solution: 
 

The use of the MB instruction can ensure that memory instructions are executed in program order by the 

processors. However, the semantics of MB do not guarantee the atomicity of memory operations in the 

system. 

 

To make system S appear to be sequentially consistent, atomicity has to be guaranteed. Atomicity can be 

guaranteed if on a write, the cache-coherence protocol guarantees that all processors in the system “appear” to 

see the modification due to the write at the same time. This can be accomplished by not allowing reads to return 

the value of a write until the invalidates for the write reach all caches with a copy of the line. 

 

Grading: 2 points for explaining why using MB is not enough to ensure sequential consistency and 2 points 

for saying how to modify S to ensure it. 
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Problem 5 [6 points for undergraduates, 11 points for graduates]  
ALL STUDENTS SHOULD SOLVE PART A. ONLY GRADUATE STUDENTS 

SHOULD SOLVE PART B. 
 

Part A [6 points]  
You are to implement a simple counting semaphore using test_and_set. Each semaphore contains an 
integer value. You must write two functions, each of which must perform atomically:  
• sem_post: increment the value  
• sem_wait: wait for the value to be positive, then decrement the value 
 

For test_and_set, use the following prototype to atomically set lock_var to 1 and return 

its previous value: int test_and_set (Lock lock_var); 
 
Add C-like pseudocode to the stub below. Ignore initialization. Assume sequential consistency. 
 
typedef struct { 
 
int value; 

Lock lock_var; 

} sem_t; 
 
sem_post (sem_t *s) 
 
{//your code below 

 

 

(1) while (test_and_set(s->lock_var)!=0); 
 
(2) s->value++; 

(3) s->lock_var = 0; 

 
 
} 

 

Grading: 3 points. 1 point for each of (1), (2) and (3) instructions. 
 
sem_wait (sem_t *s) 
 
{//your code below 

 
(1) while(1){ 
 
(2) while(test_and_set(s->lock_var)!=0); 

(3) if(s->value > 0){  
// decrement value 
s->value--; s-

>lock_var = 0; 

break;  
} 

(4) Else { 

//release lock, try again 

s->lock_var = 0; 

continue; 

} 

} 

} 

 

Grading: 3 points. 0.5 point for each of (1), (2). 1 point for block at (3) and 1 point for block at (4).  
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Part B [5 points] – ONLY GRADUATE STUDENTS SHOULD SOLVE THIS PROBLEM 

 

Now assume that the system T relaxes sequential consistency by not enforcing any program order 

constraints for a given thread. The system provides the memory barrier instruction, MB, in Problem 4. 

Insert the minimum number of MB instructions in your code for sem_post and sem_wait in Part A so that 

the code will give sequentially consistent results for system T. Write or show clearly where these 

instructions would be inserted. Credit will be given for this part only if the solution in Part A is mostly 

correct. 
 

Solution: 

 

The MB instruction must be placed after every test of the lock variable (1 instance each in post and wait) 

and before every reset of the lock variable (one instance for post and two for wait). 
 

Grading: 1 point for each correct placement. -0.5 for each extra MB. 
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Problem 6 [5 points]  
This question concerns the mini-project presentations in class. Circle the most appropriate choices for 

each question below. Points will be given for a question only if all appropriate choices for that 

question are circled and no incorrect choice is circled. Note: Points were also given if the majority of 

the correct choices were circled and no incorrect choice was circled. 
 

Part A [1 point] 
 

Which of the following is true of the AMD Naples EPYC family processor?  
a) It uses multiple chips in one package instead of a monolithic die 

b) It uses a perceptron (neural network) based branch predictor  
c) It is designed through a historic joint initiative between AMD and IBM 

d) It is built with 0.001 nm technology 
 
Solution: a, b 

 

Part B [1 point] 
 

Which of the following is true of the ARM A55 Cortex processor?  
a) It implements the Neon SIMD instruction extension  
b) It was designed to be implanted in the human cerebral cortex 

c) It uses the Big.Little architecture 

d) It has private L1 and L2 caches with an optional shared L3 cache 
 
Solution: a, c, d 

 

Part C [1 point] 

 

Which of the following is true of the Tensor Processing Unit (TPU) accelerator?  
a) It is targeted specifically for neural networks 

b) It consists of a significant matrix multiply unit  
c) It consists of a large “weight” memory 

d) It has a large out-of-order core on die to help with workloads that cannot be accelerated 
 
Solution: a, b, c 

 

Part D [1 point] 

 

Which of the following is true of the IBM Power 9 processor?  
a) It allows implementing multiple loads and stores as atomic transactions in hardware 

b) It is designed through a historic joint initiative between AMD and IBM 

c) It supports simultaneous multithreading  
d) It supports heterogeneous computing through the Coherent Accelerator Processor Interface (CAPI) 
 
Solution: a, c, d 

 

Part E [1 point] 

 

Compared to all the processors and accelerators covered in the project presentations, the following 

is/are true for the NVIDIA Tesla V100 GPU: 

a) It supports the largest number of threads 

b) It has the most sophisticated branch predictor 

c) It has the most restrictive programming model  
d) It supports the largest number of registers 
 
Solution: a, d 
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