CS 425/ ECE 428
Distributed Systems
Fall 2025

Aishwarya Ganesan
W/ Indranil Gupta (Indy)

Lecture 22 B: Stream Processing
All slides © I1G

Stream Processing: What We’'ll Cover

* Why Stream Processing
* Storm

2

Stream Processing Challenge

* Large amounts of data => Need for real-time views of
data
* Social network trends, e.g., Twitter real-time search
* Website statistics, e.g., Google Analytics
* Intrusion detection systems, e.g., in most datacenters

* Process large amounts of data

e With latencies of few seconds
* With high throughput

3 [

MapReduce?

* Batch Processing => Need to wait for entire computation
on large dataset to complete

* Not intended for long-running stream-processing

ol

Which one of these is NOT a stream processing job?

A) Uber

Calculating surge priceS [https://www.youtube.com/watch?v=YUBPimFvcN4]
B) LinkedIn

Aggregating updates into one email [http://www.vidb.org/pvidb/vol10/p1634-

. noghabi.pdf]

C) Netflix

Understanding user behavior to improve personalization

. . [https://www.youtube.com/watch?v=p8qSWE_nAAE]

D) TripAdvisor

Calculating earnings per day & fraud detection (https://www.youtube.com/watch?v=KQ50nL2hMBY]
E) None of them are stream processing
F) 2 ALL of them are stream processing jobs! 5

Enter Storm

* Apache Project

* http://storm.apache.org/

* Highly active JVM project

* Multiple languages supported via API
* Python, Ruby, etc.

* Used by over 30 companies including
» Twitter: For personalization, search
» Flipboard: For generating custom feeds
* Weather Channel, WebMD, etc.

5

http://storm.apache.org/
http://storm.apache.org/

Storm Components

* Tuples

* Streams

* Spouts

* Bolts

* Topologies

[1

Tuple

* An ordered list of elements

 E.g., <tweeter, tweet>
 E.g., <*Miley Cyrus”, “Hey! Here’s my new song!”>
* E.g., <*Justin Bieber”, “Hey! Here’s MY new song!”>

 E.g., <URL, clicker-IP, date, time>

* E.g., <coursera.org, 101.102.103.104, 4/4, 10:35:40>
* E.g., <coursera.org, 101.102.103.105, 4/4, 10:35:42>

8

Stream

* Sequence of tuples
* Potentially unbounded in number of tuples - - -

* Social network example:
« <*Miley Cyrus”, “Hey! Here’s my new song!”>,

<*“Justin Bieber”, “Hey! Here’s MY new song!”>,
<“Rolling Stones”, “Hey! Here’s my old song that’s still a super-hit!”>, ...

* Website example:

* <coursera.org, 101.102.103.104, 4/4, 10:35:40>, <coursera.org,
101.102.103.105, 4/4, 10:35:42>, ...

> [

Spout

* A Storm entity (process) that is a source of streams

e (Often reads from a crawler or DB

10

Bolt

* A Storm entity (process) that
* Processes input streams

* QOutputs more streams for other bolts

sa® L@BD

11

Topology

* A directed graph of spouts and bolts (and output bolts)

* Corresponds to a Storm “application”

12

Topology

* (Can have cycles if the application
requires it /®

:-/@.n\ =0

4

@

13

Bolts come in many Flavors

* Operations that can be performed
 Filter: forward only tuples which satisfy a condition

* Joins: When receiving two streams A and B, output all pairs
(A,B) which satisfy a condition

* Apply/transform: Modify each tuple according to a function

* And many others

* But bolts need to process a lot of data
* Need to make them fast

14

Parallelizing Bolts

* Have multiple processes (“tasks’) constitute a bolt
* Incoming streams split among the tasks

* Typically each incoming tuple goes to one task in the bolt
* Decided by “Grouping strategy”

* Three types of grouping are popular

15

Grouping

* Shuffle Grouping
e Streams are distributed evenly among the bolt’s tasks
* Round-robin fashion

.

16

Grouping

* Fields Grouping
* QGroup a stream by a subset of its fields

* E.g., All tweets where twitter username starts with [A-H,a-h,0-3] go to task 1, tweets
starting with [1-Q,1-q,4-6]go to task 2, tweets starting with [R-Z,r-z,7-9] go to task 3

[A-H.a-h,0-3]
“

- |
1-Q,i-q,4-6
T [1-Q.1-q,4-6]

[R-Z.,1-2,7-9]
17 1

Grouping

* All Grouping
» All tasks of bolt receive all input tuples

18

Storm Cluster

* Master (Coordinator or Leader) node Job Submission
* Runs a daemon called Nimbus

* Responsible for
Distributing code around cluster
Assigning tasks to machines
Monitoring for failures of machines

* Worker node
* Runs on a machine (server)
* Runs a daemon called Supervisor

 Listens for work assigned to its machine Supervisor 0
* Runs “Executors”(which contain groups of tasks) -8
* Zookeeper [%
* Coordinates Nimbus and Supervisors communication e
* All state of Supervisor and Nimbus is kept here] o)
Supervisor =

[(v [wa)4

Failures

* Atuple is considered failed when its topology (graph) of resulting tuples fails to
be fully processed within a specified timeout

* Anchoring: Anchor an output to one or more input tuples

* Failure of one tuple causes one or more tuples to replayed

20

API| For Fault-Tolerance (OutputCollector)

* Emit(tuple, output)

* Emits an output tuple, perhaps anchored on an input tuple (first argument)
* Ack(tuple)

» Acknowledge that you (bolt) finished processing a tuple
* Fail(tuple)

* Immediately fail the spout tuple at the root of tuple topology if there is an
exception from the database, etc.

* Must remember to ack/fail each tuple
* Each tuple consumes memory. Failure to do so results in memory leaks.

21

Twitter’s Heron System (Optional Additional Slide)

* Fixes the inefficiencies of Storm’s acking mechanism (among other things)

* Uses backpressure: a congested downstream tuple will ask upstream tuples
to slow or stop sending tuples

1. TCP Backpressure: uses TCP windowing mechanism to propagate
backpressure

2. Spout Backpressure: node stops reading from its upstream spouts

3. Stage by Stage Backpressure: think of the topology as stage-based, and
propagate back via stages

 Use:
* Spout+TCP, or
» Stage by Stage + TCP
* Beats Storm throughput handily (see Heron paper)

22

Summary: Stream Processing

* Processing data in real-time a big requirement today

e Storm

* And other sister systems, e.g., Spark Streaming, Heron, (LinkedIn’s
Samza, “Kafka”, etc.)

* Parallelism
* Application topologies

 Fault-tolerance

23

