
CS 425 / ECE 428
Distributed Systems

Fall 2025
Aishwarya Ganesan

W/ Indranil Gupta (Indy)
Lecture 22 B: Stream Processing

All slides © IG

• Why Stream Processing
• Storm

Stream Processing: What We’ll Cover

2

• Large amounts of data => Need for real-time views of
data
• Social network trends, e.g., Twitter real-time search
• Website statistics, e.g., Google Analytics
• Intrusion detection systems, e.g., in most datacenters

• Process large amounts of data
• With latencies of few seconds
• With high throughput

Stream Processing Challenge

3

• Batch Processing => Need to wait for entire computation
on large dataset to complete

• Not intended for long-running stream-processing

MapReduce?

4

Which one of these is NOT a stream processing job?

A) Uber
Calculating surge prices

B) LinkedIn
Aggregating updates into one email

C) Netflix
Understanding user behavior to improve personalization

D) TripAdvisor
Calculating earnings per day & fraud detection

E) None of them are stream processing
F) à ALL of them are stream processing jobs!

[https://www.youtube.com/watch?v=YUBPimFvcN4]

[http://www.vldb.org/pvldb/vol10/p1634-
noghabi.pdf]

[https://www.youtube.com/watch?v=p8qSWE_nAAE]

[https://www.youtube.com/watch?v=KQ5OnL2hMBY]

5

• Apache Project
• http://storm.apache.org/
• Highly active JVM project
• Multiple languages supported via API

• Python, Ruby, etc.

• Used by over 30 companies including
• Twitter: For personalization, search
• Flipboard: For generating custom feeds
• Weather Channel, WebMD, etc.

Enter Storm

6

http://storm.apache.org/
http://storm.apache.org/

• Tuples
• Streams
• Spouts
• Bolts
• Topologies

Storm Components

7

• An ordered list of elements
• E.g., <tweeter, tweet>

• E.g., <“Miley Cyrus”, “Hey! Here’s my new song!”>
• E.g., <“Justin Bieber”, “Hey! Here’s MY new song!”>

• E.g., <URL, clicker-IP, date, time>
• E.g., <coursera.org, 101.102.103.104, 4/4, 10:35:40>
• E.g., <coursera.org, 101.102.103.105, 4/4, 10:35:42>

Tuple

Tuple

8

• Sequence of tuples
• Potentially unbounded in number of tuples

• Social network example:
• <“Miley Cyrus”, “Hey! Here’s my new song!”>,
 <“Justin Bieber”, “Hey! Here’s MY new song!”>,
 <“Rolling Stones”, “Hey! Here’s my old song that’s still a super-hit!”>, …

• Website example:
• <coursera.org, 101.102.103.104, 4/4, 10:35:40>, <coursera.org,

101.102.103.105, 4/4, 10:35:42>, …

Stream

Tuple Tuple Tuple

9

• A Storm entity (process) that is a source of streams
• Often reads from a crawler or DB

Spout

Tuple Tuple Tuple

Tuple
Tuple

Tuple

10

• A Storm entity (process) that
• Processes input streams
• Outputs more streams for other bolts

Bolt

11

• A directed graph of spouts and bolts (and output bolts)
• Corresponds to a Storm “application”

Topology

12

• Can have cycles if the application
 requires it

Topology

13

• Operations that can be performed
• Filter: forward only tuples which satisfy a condition
• Joins: When receiving two streams A and B, output all pairs

(A,B) which satisfy a condition
• Apply/transform: Modify each tuple according to a function
• And many others

• But bolts need to process a lot of data
• Need to make them fast

Bolts come in many Flavors

14

• Have multiple processes (“tasks”) constitute a bolt
• Incoming streams split among the tasks
• Typically each incoming tuple goes to one task in the bolt

• Decided by “Grouping strategy”

• Three types of grouping are popular

Parallelizing Bolts

15

• Shuffle Grouping
• Streams are distributed evenly among the bolt’s tasks
• Round-robin fashion

Grouping

16

• Fields Grouping
• Group a stream by a subset of its fields
• E.g., All tweets where twitter username starts with [A-H,a-h,0-3] go to task 1, tweets

starting with [I-Q,i-q,4-6]go to task 2, tweets starting with [R-Z,r-z,7-9] go to task 3

Grouping

[A-H,a-h,0-3]

[I-Q,i-q,4-6]

[R-Z,r-z,7-9]
17

• All Grouping
• All tasks of bolt receive all input tuples

Grouping

18

• Master (Coordinator or Leader) node
• Runs a daemon called Nimbus
• Responsible for

• Distributing code around cluster
• Assigning tasks to machines
• Monitoring for failures of machines

• Worker node
• Runs on a machine (server)
• Runs a daemon called Supervisor
• Listens for work assigned to its machine
• Runs “Executors”(which contain groups of tasks)

• Zookeeper
• Coordinates Nimbus and Supervisors communication
• All state of Supervisor and Nimbus is kept here

Storm Cluster

Nimbus

Job Submission

ZK Cluster

W1 W2 W3 W4

Supervisor

W1 W2 W3 W4

Supervisor

W
or

ke
r N

od
es

19

• A tuple is considered failed when its topology (graph) of resulting tuples fails to
be fully processed within a specified timeout

• Anchoring: Anchor an output to one or more input tuples
• Failure of one tuple causes one or more tuples to replayed

Failures

20

• Emit(tuple, output)
• Emits an output tuple, perhaps anchored on an input tuple (first argument)

• Ack(tuple)
• Acknowledge that you (bolt) finished processing a tuple

• Fail(tuple)
• Immediately fail the spout tuple at the root of tuple topology if there is an

exception from the database, etc.
• Must remember to ack/fail each tuple

• Each tuple consumes memory. Failure to do so results in memory leaks.

API For Fault-Tolerance (OutputCollector)

21

Twitter’s Heron System (Optional Additional Slide)

• Fixes the inefficiencies of Storm’s acking mechanism (among other things)
• Uses backpressure: a congested downstream tuple will ask upstream tuples

to slow or stop sending tuples
1. TCP Backpressure: uses TCP windowing mechanism to propagate
backpressure
2. Spout Backpressure: node stops reading from its upstream spouts
3. Stage by Stage Backpressure: think of the topology as stage-based, and
propagate back via stages
• Use:

• Spout+TCP, or
• Stage by Stage + TCP

• Beats Storm throughput handily (see Heron paper) 22

• Processing data in real-time a big requirement today
• Storm

• And other sister systems, e.g., Spark Streaming, Heron, (LinkedIn’s
Samza, “Kafka”, etc.)

• Parallelism
• Application topologies
• Fault-tolerance

Summary: Stream Processing

23

