
CS 425 / ECE 428
Distributed Systems

Fall 2023
Indranil Gupta (Indy)

W/ Aishwarya Ganesan
Lecture 28: Datacenter Disasters All slides © IG

Which of the following do you think the
leading cause of datacenter outages?
1. Power outage
2. Over-heating
3. Human error
4. Fire
5. DOS attacks

Take a Guess!

2

Which of the following do you think the
leading cause of datacenter outages?
1. Power outage
2. Over-heating
3. Human error (70%)
4. Fire
5. DOS attacks

Take a Guess!

3

• A system operator mistakenly deleted the $38 billion Alaska Permanent
Fund database and then deleted its backup.

• A maintenance contractor’s mistake shut down the Oakland Air Traffic
Control Center.

• A State of Virginia technician pulled the wrong controller and crashed a
redundant SAN that already had suffered a controller failure.

• A technician with DBS Bank made an unauthorized repair on a
redundant SAN and took down both sides.

Source:
http://www.availabilitydigest.com/public_articles/0704/data_center_out
ages-lessons.pdf

Human Error Examples

4

http://www.availabilitydigest.com/public_articles/0704/data_center_outages-lessons.pdf
http://www.availabilitydigest.com/public_articles/0704/data_center_outages-lessons.pdf

• A system administrator closed all applications on one server in an
active/active pair to upgrade it and then shut down the operating server.

• A test technician failed to disable a fire alarm actuator prior to testing
the fire suppression system.

• Siren noise damaged several disks, including the virtual backup disks.
– Shouting in the datacenter: https://www.youtube.com/watch?v=tDacjrSCeq4

• (hosting.com) Incorrect breaker operation sequence executed by
servicing vendor caused a shutdown of UPS and offline time to websites
of 1-5 hours

• Thirteen million German web sites went dark when an operator
mistakenly uploaded an empty zone file.

• (And many more!)
Source:

http://www.availabilitydigest.com/public_articles/0704/data_center_out
ages-lessons.pdf

Human Error Examples (2)

5

https://www.youtube.com/watch?v=tDacjrSCeq4
http://www.availabilitydigest.com/public_articles/0704/data_center_outages-lessons.pdf
http://www.availabilitydigest.com/public_articles/0704/data_center_outages-lessons.pdf

• They’re fun! (Schadenfreude!)
• But really – so that we can learn lessons
• Learn more about the actual behavior of systems in the real

world
• Design better systems in the future
• Not our goal to say some companies are worse than others

– In fact, companies which suffer outages run better and more
robust infrastructure afterwards!

– “What doesn’t kill you, makes you stronger”
– “It builds character” – Calvin’s Dad (in Calvin and Hobbes)

• We’ll see a few case studies of outages
– And learn lessons from them

Why Study Outages?

6

I. AWS Outage

7

• Occurred on April 21st, 2011
• AWS published a post-mortem analysis

– http://aws.amazon.com/message/65648/

• Not our goal to say AWS is a bad infrastructure
– In fact, quite the opposite – AWS treated customers very well
– After the outage, AWS is still market leader
– AWS fixed infrastructure to prevent recurrence

• During the outage
– Several companies using AWS EC2 went down, e.g., Reddit,

FourSquare
– AWS dashboard showed problems with EC2, and other storage
– Lasted 3.5 days (at least)
– Led to some data loss

Overview

8

http://aws.amazon.com/message/65648/

• AWS Regions: Separate datacenters.
– E.g., us-east-1, us-west-1, etc.
– Each region consists of availability zones

• can have automatic data replication across zones in a region
(but not all customers do it)

• AWS Elastic Block Storage (EBS) – mountable storage
“devices”, accessible from EC2 instances
• 1 EBS volume runs inside an Availability Zone

– Two networks: primary n/w used for EC2 and EBS control plane;
secondary n/w used for overflow – has lower capacity
– Control information replicated across zones (for availability)

• EBS volumes replicated for durability
• Each volume has a primary replica
• If out of sync or node failure, replicas programmed to do

aggressive re-mirroring of data

Background

9

• 12.47 AM: Routine primary n/w capacity upgrade in an av.
zone in US East Region

• Traffic shifted off several primary n/w routers to other primary
n/w routers

– Critical Error: someone shifted traffic for one such router to a
secondary n/w router

• => Several EBS volumes now had no/bad primary n/w
– Primary n/w disconnected
– Second n/w has low capacity and thus overwhelmed
– Many primary replicas had no backup

• Team discovered critical error and rolled it back

(Is it over yet?)

Timeline of Outage

10

• Team discovered critical error and rolled it back
– Due to network partitioning, many primary replicas thought they

had no backup: these automatically started re-mirroring
aggressively

– All at once: free n/w cap quickly used, replicas stuck in loop
– Re-mirroring storm: 13% of EBS volumes

• N/w unavailable for Control Plane
– Unable to serve “create volume” API requests for EBS
– Control plane ops have long time-out; began to back up
– When thread pool filled up, control plane started to reject create

volume requests
• 2.40 AM: Team disabled all new “create volume” API requests
• 2.50 AM: all error rates and latencies for EBS APIs start to

recover
(Is it over yet?)

Timeline (Contd.)

11

• Two issues made things worse
– Primaries searching for potential replicas did not back off
– A race condition existed in EBS code that was only triggered by

high request rates: activated now, caused more node failures
• 5.30 AM: Error rates and latencies increase again
• Re-mirroring is negotiation b/w EC2 node, EBS node, and EBS

control plane (to ensure 1 primary)
– Due to race condition, EBS nodes started to fail
– Rate of negotiations increased
– Caused more node failures (via race), and rinse-n-repeat
– “Brown-out” of EBS API functionalities

• 8.20 AM: Team starts disabling all communication b/w EBS
cluster in affected av. zone and EBS control plane

– Av. zone still down, but control plane recovering slowly

Timeline (Contd.)

12

• 11.30 am: Team figures out how to prevent EBS servers in av.
zone from futile re-mirroring

– Affected av. zone slowly recovers
• Customers still continued to face high error rates for new EBS-

backed EC2 instances until noon
– Another new EBS control plane API had recently been launched

(for attaching new EC2 instances to volumes)
– Its error rates were being shadowed by new errors

• Noon: No more volumes getting stuck
• But 13% volumes still in stuck state

Timeline (Contd.)

13

• Long tail of recovery
– Read more on the post-mortem to find out how team

addressed this
– By noon April 24th, all but 1.04 % of volumes had been

restored
– Eventually, 0.07% volumes could not be recovered, and

were lost forever
• This outage also affected relational database service

(RDS) that were single – av. zone.

Timeline (Contd.)

14

Large outages/failures
• Often start from human error
• But balloon due to cascading sub-failures

General Lessons Learnt

15

Ways this outage could have been avoided:
• Audit n/w configuration change processes, create a step-by-

step protocol for upgrades
• Higher capacity in secondary n/w
• Prevent re-mirroring storm: backing off rather than

aggressively retry
• Fixing race condition
• Users who wrote code to take advantage of multiple av. zones

within region not affected
• Better tools for communication, health (AWS Dashboard),

service credit for customers (multi-day credit)

Specific Lessons Learnt

16

II. Facebook Outage

17

• Outage occurred on 23rd September, 2010
• FB Unreachable for 2.5 hours (worst in past 4 years)
• Facebook published post-mortem

– https://www.facebook.com/notes/facebook-
engineering/more-details-on-todays-
outage/431441338919

• Not our goal to say Facebook is a bad infrastructure
– In fact, after the outage, Facebook still remained market

leader in social networks
– Facebook fixed infrastructure to prevent recurrence

Overview

18

https://www.facebook.com/notes/facebook-engineering/more-details-on-todays-outage/431441338919
https://www.facebook.com/notes/facebook-engineering/more-details-on-todays-outage/431441338919
https://www.facebook.com/notes/facebook-engineering/more-details-on-todays-outage/431441338919

• Data stored in a persistent store, and cache
– Persistent store = many servers
– Cache = many servers running a distributed cache system

• Includes configuration data
• FB has automated system for verifying

configuration values in the cache
– and replace invalid values with updated values from the

store

Background

19

• On Sep 23, FB made a change to the persistent copy of a
configuration

– Change was invalid
• All clients (FB cache servers) saw invalid value

– All attempted to fix it
– All queried cluster of databases
– Databases overwhelmed quickly by 100K’s queries per

second
• Team fixed the invalid configuration

(Is it over yet?)

Timeline

20

• When client received error from DB, it interpreted
it as invalid and deleted cache entry
– When DB failed to respond => client created more

queries
– No back off
– Rinse-n-repeat
– (Cascading failures)

Timeline (Contd.)

21

• FB’s Solution
– Turn off entire FB website
– Stop all traffic to DB cluster
– DB recovers
– Slowly allow users back on: allowed clients to slowly

update caches
– Took until later in day for entire site to be back up

Timeline (Contd.)

22

• New configuration system design
• When cannot access resource

– Don’t retry aggressively
– But instead, back off
– Each time a request fails, wait twice as long as last time

• Called “Exponential backoff”
• Used in networking protocols like 802.11 to avoid

congestion

Lessons Learnt

23

III. The Planet Outage

• Outage occurred on 31st May, 2008
• Source:

http://www.availabilitydigest.com/public_articles/0309/planet_
explosion.pdf

• The Planet – 4th largest web hosting company,
supported 22K websites

– 6 datacenters: Houston (2), Dallas (4)
• Took down 9K servers and 7.5K businesses

Overview

25

http://www.availabilitydigest.com/public_articles/0309/planet_explosion.pdf
http://www.availabilitydigest.com/public_articles/0309/planet_explosion.pdf

• 5.55 pm: Explosion in H1 Houston DC
– Short circuit in transformer set it on fire
– Caused an explosion of battery-acid fumes from

UPS backup
– (Cascading failures)
– Blew out 3 walls of first floor

Timeline

26

• No servers were damaged, but 9K servers brought down
• Fire department evacuated building

– Directed that backup generators could not be turned on
– Due to fire hazard, no staff allowed back in until 10 pm

• Reportedly, the Planet staff had to physically ship some
critical servers to their other DCs (on pickups)

– But limited by power and cooling at other DCs

Timeline (Contd.)

27

• 5 pm Jun 2: Power restored to second floor
• Jun 4: First floor servers were being restored one rack at

a time

• All the while: The Planet provided frequent updates to
customers (15 min to 1 hour)

Timeline (Contd.)

28

• Backup data & services across DCs, perhaps
across different providers
– “Business Continuity Plans”
– Whose responsibility would this be?
– Provider?
– Customer? More difficult due to extra work and

data lock-in across providers.
• May cost customers more

– Like insurance premiums?

Lessons Learnt

29

Wrap-up

• Outages are inevitable
• We’ve seen how AWS, Facebook, The Planet kept

affected users updated throughout
– Frequent updates
– Coupons/discounts
– Published post-mortems afterwards
– All these bolster customer confidence

• Many companies run dashboards with real-time
information

– Google Apps status dashboard
– AWS dashboard

Outages are Inevitable

31

Not all companies are as open as those discussed

• RIM Apr 2007 – day-long outage; no details
•Hostway Jul 2007 – informed customers that it
would move its DC Miami à Tampa, and that outage
would be 12 hours

– Outage was 3-7 days

Not all Companies …

32

• Datacenter fault-tolerance akin to human
ailments/medicine today
– Most common illnesses (crash failures) addressed
– But uncommon cases can be horrible (unexpected

outages)
• Testing is important

– American Eagle, during a disaster, discovered that
they could not fail over to backup DC

• Failed upgrades common cause of outage
– Need a fallback plan

Overall Lessons Learnt

33

• Data availability and recovery
– BCP, Disaster-tolerance
– Cross-DC replication, either by provider or by customer

• Consistent Documentation
– A Google AppEngine outage prolonged because ops did

not know which version of docs to use for recovery
– Google’s fix: mark old documents explicitly as

“deprecated”
• Outages always a cascading series of failures

– Need more ways to break the chain and prevent outages

Overall Lessons Learnt (2)

34

• Other sources of outages
– DOS-resistance
– Internet outages

• Under-sea cable cut, DNS failures, Government blocking
Internet (mostly via DNS)

• Solution: Alternate DNS services

• Many failures are unexpected
• But there are also planned outages (e.g., kernel

upgrades)
– Need to be planned well
– Steps documented and followed
– Fallback plans in place

Overall Lessons Learnt (3)

35

• MP4 due this Sunday, demos Monday.
• Please fill out the Demo signup sheets by tonight!
• Final exam window: See Piazza for instructions
• Please fill out ICES Forms! Your feedback is

valuable
– More valuable than other students’ feedback, especially

since you have been attending lecture!

• Next lecture: Wrap up!

Announcements

36

Course Evaluations (“ICES”)
• Please complete them online! (Search for mail from “ICES”)
• Main purpose: to give us feedback on how useful this course was to you

(and to improve future versions of the course)
• I won’t see these evaluations until after you see your grades
• Answer all questions
• Please write your detailed feedback – this is valuable for future versions

of the course!

37

