CS 425/ ECE 428
Distributed Systems
Fall 2023

Aishwarya Ganesan
W/ Indranil Gupta (Indy)

Lecture 23: Distributed File Systems Allslides © IG

File System

« Contains files and directories (folders)
* Higher level of abstraction

— Prevents users and processes from dealing with disk blocks
and memory blocks

File Contents

» Typical File
Header Block 0 |Block 1 Block N-1

Y
\ File contents are in here

* Timestamps: creation, read, write, header
* File type, e.g., .c, .java
* Ownership, e.g., edison
* Access Control List: who can access this
file and in what mode
» Reference Count: Number of directories
containing this file
* May be > 1 (hard linking of files) 3
* When 0, can delete file

What about Directories?

e They’re just files!
e With their “data” containing

— The meta-information about files the directory contains
— Pointers (on disk) to those files

Unix File System: Opening and Closing Files

Uses notion of file descriptors

— Handle for a process to access a file

Each process: Needs to open a file before
reading/writing file

— OS creates an internal datastructure for a file descriptor,
returns handle

filedes=open(name, mode)

— mode = access mode, e.g., r, w, X

filedes=creat(name, mode)
— Create the file, return the file descriptor

close(filedes) 5

Unix File System: Reading and Writing

» error=rcad(filedes, buffer, num_bytes)

— File descriptor maintains a read-write pointer pointing to an offset within
file

— read() reads num_bytes starting from that pointer (into buffer), and
automatically advances pointer by num_bytes

— error returns the number of bytes read/written, or 0 if EOF, or -1 if error
(errno 1s set)
» error=write(filedes, buffer, num_bytes)
— Wirites from buffer into file at position pointer
— Automatically advances pointer by num_bytes

» pos=lseck(filedes, offset, whence)
— Moves read-write pointer to position offset within file
— whence says whether offset absolute or relative (relative to current pointer)

Unix File System: Control Operations

o status=link(old link, new link)
— Creates a new link at second arg to the file at first arg

— Old_link and new_link are Unix-style names, e.g.,
“/usr/edison/my_invention”

— Increments reference count of file

— Known as a “hard link”

Vs. “Symbolic/Soft linking” which creates another file pointing to this file;
does not change reference count

o status=unlink(old link)
— Decrements reference count
— If count=0, can delete file
o status=stat/fstat(file name, buffer)
— Get attributes (header) of file into buffer

Distributed File Systems (DFS)

* Files are stored on a server machine

— client machine does RPCs to server to perform operations on
file

Desirable Properties from a DFS

« Transparency: client accesses DFS files as if it were
accessing local (say, Unix) files
— Same API as local files, i.e., client code doesn’t change
— Need to make location, replication, etc. invisible to client
* Support concurrent clients

— Multiple client processes reading/writing the file
concurrently

* Replication: for fault-tolerance

Concurrent Accesses in DFS

* One-copy update semantics: when file is replicated,
1ts contents, as visible to clients, are no different
from when the file has exactly 1 replica

* At most once operation vs. At least once operation

— Choose carefully
— At most once, e.g., append operations cannot be repeated

— Idempotent operations have no side effects when repeated:
they can use at least once semantics, e.g., read at absolute
position in file

Security in DFS

* Authentication

— Verify that a given user is who they claim to be

« Authorization
— After a user is authenticated, verify that the file they’re
trying to access is in fact allowed for that user
— Two popular flavors

— Access Control Lists (ACLs) = per file, list of allowed users
and access allowed to each

— Capability Lists = per user, list of files allowed to access
and type of access allowed

Could split it up into capabilities, each for a different (user,file)

10

Let’s Build a DFS!

« We’ll call it our “Vanilla DFS”

Vanilla DFS runs on a server, and at multiple clients
Vanilla DFS consists of three types of processes

Flat file service: at server

Directory service: at server, talks to (i.e., “client of”) Flat file
service

Client service: at client, talks to Directory service and Flat
file service

11

Vanilla DFS: Flat File Service API

« Read(file id, buffer, position, num_bytes)

— Reads num_bytes from absolute position in file file id
into buffer

» File id is not a file descriptor, it’s a unique id of that file

— No automatic read-write pointer!

* Why not? Need operation to be idempotent (at least once
semantics)

— No file descriptors!

* Why not? Need servers to be stateless: easier to recover after
failures (no state to restore!)

— In contrast, Unix file system operations are neither

idempotent nor stateless 12

Vanilla DFS: Flat File Service API (2)

« write(file id, buffer, position, num_bytes)
— Similar to read

» create/delete(file id)
e get attributes/set attributes(file id, buffer)

13

Vanilla DFS: Directory Service API

file id = lookup(dir, file name)
— file id can then be used to access file via Flat file service

add name(dir, file name, buffer)

— Increments reference count

un_name(dir, file name)

— Decrements reference count; if =0, can delete

list=get names(dir, pattern)
— Like Is —al or dir, followed by grep or find

14

Can we Build a Real DFS Already?

» Next: Two popular distributed file systems
— NFS and AFS

15

NFS

e Network File System
* Sun Microsystems, 1980s
» Used widely even today

16

NFS Architecture

Client
Process Process
FVirtual File System
Unix NES

Server

Virtual File System

File system || Client system

Local Disk

NFS
Server system

Unix
File system

Local Disk

17

NFS Client and Server Systems

« NFS Client system
— Similar to our “Client service” in our Vanilla DFS
— Integrated with kernel (OS)
— Performs RPCs to NFS Server system for DFS operations

 NFS Server system

— Plays the role of both Flat file service + Directory service
from our Vanilla DFS

— Allows mounting of files and directories
* Mount /usr/tesla/inventions into /usr/edison/my_competitors
+ =>Now, /usr/edison/my_competitors/foo refers to /usr/tesla/inventions/foo
* Mount: Doesn’t clone (copy) files, just point to that directory now

18

Virtual File System Module

« Allows processes to access files via file descriptors

— Just like local Unix files! So, local and remote files are
indistinguishable (i.e., gives transparency)

— For a given file access, decides whether to route to local file
system or to NFS client system

« Names all files (local or remote) uniquely using “NFS
file handles™

» Keeps a data structure for each mounted file system

» Keeps a data structure called v-node for all open files

— Iflocal file, v-node points to local disk block (called i-

node) 0

— If remote, v-node contains address of remote NFS server

Server Optimizations

» Server caching is one of the big reasons NFS is so
fast with reads

— Server Caching = Store, in memory, some of the recently-
accessed blocks (of files and directories)

— Most programs (written by humans) tend to have locality of

access
» Blocks accessed recently will be accessed soon in the future

Writes: two flavors

— Delayed write: write in memory, flush to disk every 30 s
(e.g., via Unix sync operation)
» Fast but not consistent
— Write-through: Write to disk immediately before ack-ing
client 20

» Consistent but may be slow

Client Caching

» Client also caches recently-accessed blocks

» Each block in cache is tagged with
— Tc: the time when the cache entry was last validated.
— Tm: the time when the block was last modified at the server.

— A cache entry at time 7 is valid if
(T-Tc <t) or (Tm =Tm
— t=freshness interval

client server) :
» Compromise between consistency and efficiency

» Sun Solaris: ¢ is set adaptively between 3-30 s for files, 30-60 s
for directories

* When block is written, do a delayed-write to server 3

Andrew File System (AFS)

* Designed at CMU

— Named after Andrew Carnegie and Andrew Mellon, the “C”
and “M” in CMU

* In use today in some clusters (especially University
clusters)

22

Interesting Design Decisions in AFS

* Two unusual design principles:

Whole file serving
» Not in blocks
Whole file caching
e Permanent cache, survives reboots

» Based on (validated) assumptions that

Most file accesses are by a single user
Most files are small

Even a client cache as “large” as 100MB is supportable (e.g., in
RAM)

File reads are much more often that file writes, and typically
sequential

23

AFS Details

* Clients system = Venus service
» Server system = Vice service

* Reads and writes are optimistic
— Done on local copy of file at client (Venus)
— When file closed, writes propagated to Vice

When a client (Venus) opens a file, Vice:
— Sends it entire file
— Gives client a callback promise

» C(Callback promise

— Promise that if another client modifies then closes the file, a callback
will be sent from Vice to Venus

— Callback state at Venus only binary: valid or canceled 24

Summary

« Distributed File systems

— Widely used today
e Vanilla DFS
« NFS
« AFS

* Many other distributed file systems out there today!

25

Announcements

HW4 and MP4 due after TG/Fall break

