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Why Mutual Exclusion?

• Bank’s Servers in the Cloud: Two of your 
customers make simultaneous deposits of 
$10,000 into your bank account, each from a 
separate ATM. 
• Both ATMs read initial amount of $1000 

concurrently from the bank’s cloud server
• Both ATMs add $10,000 to this amount 

(locally at the ATM)
• Both write the final amount to the server
• What’s wrong?
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Why Mutual Exclusion?

• Bank’s Servers in the Cloud: Two of your 
customers make simultaneous deposits of $10,000 
into your bank account, each from a separate ATM. 
• Both ATMs read initial amount of $1000 

concurrently from the bank’s cloud server
• Both ATMs add $10,000 to this amount 

(locally at the ATM)
• Both write the final amount to the server
• You lost $10,000!

• The ATMs need mutually exclusive access to your  
account entry at the server 
• or, mutually exclusive access to executing the 

code that modifies the account entry
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More Uses of Mutual Exclusion

• Distributed File systems
• Locking of files and directories

• Accessing objects in a safe and consistent way
• Ensure at most one server has access to object 

at any point of time
• Server coordination

• Work partitioned across servers
• Servers coordinate using locks

• In industry
• Chubby is Google’s locking service
• Many cloud stacks use Apache Zookeeper for 

coordination among servers
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Problem Statement for Mutual Exclusion

• Critical Section Problem: Piece of code (at all 
processes) for which we need to ensure there is 
at most one process executing it at any point of 
time.

• Each process can call three functions
•  enter() to enter the critical section (CS)
•  AccessResource() to run the critical 

section code
•  exit() to exit the critical section 

 

5



Our Bank Example

ATM1:
 enter(S);
      // AccessResource()
 obtain bank amount;
 add in deposit;
 update bank amount;
     // AccessResource() end
 exit(S); // exit
 

ATM2:
 enter(S);
      // AccessResource()
 obtain bank amount;
 add in deposit;
 update bank amount;
     // AccessResource() end
 exit(S); // exit
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Approaches to Solve Mutual Exclusion

• Single OS:
• If all processes are running in one OS on a 

machine (or VM), then 
• Semaphores, mutexes, condition variables, 

monitors, etc.

7



Approaches to Solve Mutual Exclusion (2)

• Distributed system:
• Processes communicating by passing 

messages
Need to guarantee 3 properties:

• Safety (essential) – At most one process 
executes in CS (Critical Section) at any time

• Liveness (essential) – Every request for a CS 
is granted eventually

• Ordering (desirable) – Requests are granted in 
the order they were made
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Processes Sharing an OS: Semaphores

• Semaphore == an integer that can only be accessed via two special 
functions

• Semaphore S=1; // Max number of allowed accessors

1. wait(S) (or P(S) or down(S)): 

while(1) { // each execution of the while loop is atomic
    if (S > 0) {
       S--;
       break;
           }
}

Each while loop execution and S++ are each atomic operations – 
supported via hardware instructions such as compare-and-
swap, test-and-set, etc.

2. signal(S) (or V(S) or up(s)): 

  S++; // atomic

enter()

exit()
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Our Bank Example Using Semaphores

Semaphore S=1; // shared
ATM1:
 wait(S);
      // AccessResource()
 obtain bank amount;
 add in deposit;
 update bank amount;
     // AccessResource() end
 signal(S); // exit
 

Semaphore S=1; // shared
ATM2:
 wait(S);
      // AccessResource()
 obtain bank amount;
 add in deposit;
 update bank amount;
     // AccessResource() end
 signal(S); // exit
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Next

• In a distributed system, cannot share 
variables like semaphores

• So how do we support mutual 
exclusion in a distributed system?
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System Model

• Before solving any problem, specify its 
System Model:
• Each pair of processes is connected by reliable 

channels (such as TCP). 
• Messages are eventually delivered to recipient, 

and in FIFO (First In First Out) order.
• Processes do not fail.

• Fault-tolerant variants exist in literature.
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Central Solution

• Elect a central master (or leader)
• Use one of our election algorithms!

• Leader keeps 
• A queue of waiting requests from processes who wish 

to access the CS
• A special token which allows its holder to access CS

• Actions of any process in group:
• enter()

• Send a request to leader
• Wait for token from leader

• exit()
• Send back token to leader
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Central Solution

• Leader Actions: 
• On receiving a request from process Pi

if (leader has token) 
Send token to Pi

else
Add Pi to queue

• On receiving a token from process Pi
if (queue is not empty)

Dequeue head of queue (say Pj), send that 
process the token

else
Retain token
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Analysis of Central Algorithm

• Safety – at most one process in CS
• Exactly one token

• Liveness – every request for CS granted eventually
• With N processes in system, queue has at most 

N processes
• If each process exits CS eventually and no 

failures, liveness guaranteed
• FIFO Ordering is guaranteed, in order of requests 

received at leader
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Analyzing Performance

Efficient mutual exclusion algorithms use fewer messages, 
and make processes wait for shorter durations to access 
resources. Three metrics:
• Bandwidth: the total number of messages sent in each 

enter and exit operation.
• Client delay: the delay incurred by a process at each 

enter and exit operation (when no other process is in, or 
waiting)

  (We will prefer mostly the enter operation.)
• Synchronization delay: the time interval between one 

process exiting the critical section and the next process 
entering it (when there is only one process waiting)
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Analysis of Central Algorithm

• Bandwidth: the total number of messages sent in each enter 
and exit operation.
• 2 messages for enter 
• 1 message for exit

• Client delay: the delay incurred by a process at each enter 
and exit operation (when no other process is in, or waiting)

• 2 message latencies (request + grant) 

• Synchronization delay: the time interval between one 
process exiting the critical section and the next process 
entering it (when there is only one process waiting)

• 2 message latencies (release + grant) 
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But…

• The leader is the performance bottleneck 
and SPoF (single point of failure)

18



Ring-based Mutual Exclusion

Currently holds token,
   can access CS

Token: 

N80

N32

N5

N12

N6

N3

19



Ring-based Mutual Exclusion

Cannot access CS anymore

Here’s the token!

Token: 

N80

N32

N5

N12

N6

N3



Ring-based Mutual Exclusion

Token: 

N80

N32

N5

N12

N6

N3

Currently holds token,
   can access CS



Ring-based Mutual Exclusion

• N Processes organized in a virtual ring
• Each process can send message to its successor 

in ring
• Exactly 1 token
• enter()

• Wait until you get token
• exit() // already have token

• Pass on token to ring successor
• If receive token, and not currently in enter(), 

just pass on token to ring successor

22



Analysis of Ring-based Mutual Exclusion

• Safety
• Exactly one token

• Liveness
• Token eventually loops around ring and 

reaches requesting process (no failures)
• Bandwidth

• Per enter(), 1 message by requesting process 
but up to N messages throughout system

• 1 message sent per exit()
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Analysis of Ring-Based Mutual Exclusion (2)

• Client delay: 0 to N message transmissions after 
entering enter()
• Best case: already have token
• Worst case: just sent token to neighbor

• Synchronization delay between one process’ exit() 
from the CS and the next process’ enter(): 
• Between 1 and (N-1) message transmissions.
• Best case: process in enter() is successor of 

process in exit()
• Worst case: process in enter() is predecessor 

of process in exit()
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Next

• Client/Synchronization delay to access CS still 
O(N) in Ring-Based approach.

• Can we make this faster?
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System Model

• Before solving any problem, specify its 
System Model:
• Each pair of processes is connected by reliable 

channels (such as TCP). 
• Messages are eventually delivered to recipient, 

and in FIFO (First In First Out) order.
• Processes do not fail.
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Ricart-Agrawala’s Algorithm

• Classical algorithm from 1981
• Invented by Glenn Ricart (NIH) and Ashok 

Agrawala (U. Maryland)

• No token
• Uses the notion of causality and multicast
• Has lower waiting time to enter CS than Ring-

Based approach
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Key Idea: Ricart-Agrawala Algorithm

• enter() at process Pi
• multicast a request to all processes

• Request: <T, Pi>, where T = current 
Lamport timestamp at Pi

• Wait until all other processes have responded 
positively to request

• Requests are granted in order of causality
• <T, Pi> is used lexicographically: Pi in request <T, 

Pi> is used to break ties (since Lamport 
timestamps are not unique for concurrent events)
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Messages in RA Algorithm

• enter() at process Pi
•  set state to Wanted
•  multicast “Request” <Ti, Pi> to all processes, where Ti = 

current Lamport timestamp at Pi
•  wait until all processes send back “Reply”
•  change state to Held and enter the CS

• On receipt of a Request <Tj, Pj> at Pi (i ≠ j):
• if (state = Held) or (state = Wanted & (Ti, i) < (Tj, j)) 
  // lexicographic ordering in (Tj, Pj)
      add request to local queue (of waiting requests)
       else send “Reply” to Pj

• exit() at process Pi
•  change state to Released and “Reply” to all queued requests.
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Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

Request message
<T, Pi> = <102, 32>
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Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

Reply messages

N32 state: Held.
Can now access CS
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N5

N12

N6
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N32 state: Held.
Can now access CS

N12 state:
Wanted

N80 state:
Wanted

Request message
<115, 12>

Request message
<110, 80>



Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Held.
Can now access CS

N12 state:
Wanted

N80 state:
Wanted

Reply messages
Request message

<115, 12>

Request message
<110, 80>



Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Held.
Can now access CS
Queue requests:
<115, 12>, <110, 80>

N12 state:
Wanted

N80 state:
Wanted

Reply messages
Request message

<115, 12>

Request message
<110, 80>



Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Held.
Can now access CS
Queue requests:
<115, 12>, <110, 80>

N12 state:
Wanted

N80 state:
Wanted
Queue requests: <115, 12> (since > (110, 80)) 

Reply messages
Request message

<115, 12>

Request message
<110, 80>



Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Held.
Can now access CS
Queue requests:
<115, 12>, <110, 80>

N12 state:
Wanted

N80 state:
Wanted
Queue requests: <115, 12>
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Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Released.
Multicast Reply to
<115, 12>, <110, 80>

N12 state:
Wanted
(waiting for 
N80’s 
reply)

N80 state:
Held. Can now access CS.
Queue requests: <115, 12>

Reply messages

Request message
<115, 12>

Request message
<110, 80>



Analysis: Ricart-Agrawala’s Algorithm

• Safety
• Two processes Pi  and Pj cannot both have access 

to CS
• If they did, then both would have sent Reply to each 

other 
• Thus, (Ti, i) < (Tj, j) and (Tj, j) < (Ti, i), which are 

together not possible
• What if (Ti, i) < (Tj, j) and Pi replied to Pj’s request 

before it created its own request? 
• Then it seems like both Pi and Pj would 

approve each others’ requests
• But then, causality and Lamport timestamps at 

Pi implies that Ti > Tj , which is a 
contradiction

• So this situation cannot arise
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Analysis: Ricart-Agrawala’s Algorithm (2)

• Liveness
• Worst-case: wait for all other (N-1) 

processes to send Reply
• Ordering

• Requests with lower Lamport timestamps 
are granted earlier
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Performance: Ricart-Agrawala’s Algorithm 

• Bandwidth: 2*(N-1) messages per enter() 
operation
• N-1 unicasts for the multicast request + N-1 replies
• N messages if the underlying network supports 

multicast (1 multicast + N-1 unicast replies)
• N-1 unicast messages per exit operation 

• 1 multicast if the underlying network supports 
multicast

• Client delay: one round-trip time
• Synchronization delay: one message 

transmission time
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Ok, but …

• Compared to Ring-Based approach, in Ricart-
Agrawala approach 
• Client/synchronization delay has now gone 

down to O(1)
• But bandwidth has gone up to O(N)

• Can we get both down?
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Maekawa’s Algorithm: Key Idea

• Ricart-Agrawala requires replies from all processes 
in group

• Instead, get replies from only some processes in 
group

• But ensure that only process one is given access to 
CS (Critical Section) at a time
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Maekawa’s Voting Sets

• Each process Pi is associated with a voting set Vi (of 
processes)

• Each process belongs to its own voting set

• The intersection of any two voting sets must be non-empty

• Same concept as Quorums!

• Each voting set is of size K

• Each process belongs to M other voting sets

• Maekawa showed that K=M=ÖN works best

•    One way of doing this is to put N processes in a ÖN by ÖN  matrix 
and for each Pi, its voting set Vi = row containing Pi + column 
containing Pi. Size of voting set = 2*ÖN-1 43



Example: Voting Sets with N=4

p1 p2

p3 p4

P1’s voting set = V1
V2

V3 V4

p1  p2
p3  p4
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Maekawa: Key Differences From Ricart-Agrawala

• Each process requests permission from only its voting 
set members
• Not from all

• Each process (in a voting set) gives permission to at 
most one process at a time
• Not to all
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Actions

• state = Released, voted = false
• enter() at process Pi:

• state = Wanted
• Multicast Request message to all processes in Vi
• Wait for Reply (vote) messages from all processes 

in Vi (including vote from self)
• state = Held

• exit() at process Pi:
• state = Released
• Multicast Release to all processes in Vi
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Actions (2)

• When Pi receives a Request from Pj:
if (state == Held OR voted = true)
 queue Request
else
 send Reply to Pj and set voted = true

• When Pi receives a Release from Pj:
if (queue empty)
 voted = false
else
 dequeue head of queue, say Pk
 Send Reply only to Pk
 voted = true
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Safety

• When a process Pi receives replies from all its 
voting set Vi members, no other process Pj 
could have received replies from all its voting 
set members Vj
• Vi and Vj intersect in at least one process 

say Pk
• But Pk sends only one Reply (vote) at a 

time, so it could not have voted for both Pi 
and Pj
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Liveness

• A process needs to wait for at most (N-1) other 
processes to finish CS

• But does not guarantee liveness
• Since can have a deadlock
• Example: all 4 processes need access

• P1 is waiting for P3
• P3 is waiting for P4
• P4 is waiting for P2
• P2 is waiting for P1
• No progress in the system!

• There are deadlock-free versions

p1 p2

p3 p4

P1’s voting set = V1
V2

V3 V4
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Performance

• Bandwidth
• 2ÖN messages per enter() 
• ÖN messages per exit()
• Better than Ricart and Agrawala’s (2*(N-

1) and N-1 messages)
• ÖN quite small. N ~ 1 million => ÖN = 1K

• Client delay: One round trip time
• Synchronization delay: 2 message transmission 

times
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Why ÖN ? 

• Each voting set is of size K

• Each process belongs to M other voting sets

• Total number of voting set members (processes may be repeated) = 
K*N

• But since each process is in M voting sets

• K*N/M = N => K = M   (1)

• Consider a process Pi

• Total number of voting sets = members present in Pi’s voting 
set and all their voting sets = (M-1)*K + 1

• All processes in group must be in above

• To minimize the overhead at each process (K), need each of 
the above members to be unique, i.e.,

• N = (M-1)*K + 1

• N = (K-1)*K + 1  (due to (1))

• K ~ ÖN 51



Failures?

• There are fault-tolerant versions of the 
algorithms we’ve discussed
• E.g., Maekawa

• One other way to handle failures: Use Paxos-
like approaches!
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Chubby

• Google’s system for locking
• Used underneath Google’s systems like 

BigTable, Megastore, etc.
• Not open-sourced but published
• Chubby provides Advisory locks only

• Doesn’t guarantee mutual exclusion unless 
every client checks lock before accessing 
resource

Reference: http://research.google.com/archive/chubby.html
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Chubby (2)

• Can use not only for locking but also writing small 
configuration files

• Relies on Paxos-like (consensus) protocol
• Group of servers with one elected as Master (Leader) 

• All servers replicate same information
• Clients send read requests to Leader, which serves it 

locally
• Clients send write requests to Leader, which sends it to 

all servers, gets majority (quorum) among servers, and 
then responds to client

• On leader failure, run election protocol
• On replica failure, just replace it and have it catch up

Server A

Server B

Server C

Server D

Server E

Leader (Master)
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Summary

• Mutual exclusion important problem in cloud 
computing systems

• Classical algorithms
• Central
• Ring-based
• Ricart-Agrawala
• Maekawa

• Industry systems
• Chubby: a coordination service
• Similarly, Apache Zookeeper for coordination
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Announcements

• Reminder: HW3 due 10/30 (Monday!)
• MP3 due 11/5 (demos 11/6)
• You should have started on both by now.
• If you have uncollected midterms, they are available this week in my office during 

my OHs (only!)
• Final exam 12/12 7PM-10PM. See details on Piazza and website. Please plan 

accordingly!
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