
CS 425 / ECE 428
Distributed Systems

Fall 2022
Indranil Gupta (Indy)

Lecture 7: Peer-to-peer Systems I

All slides © IG

MP2 Released

• You will be implementing
• Failure detector
• Membership protocol

• Using concepts you learnt last week!
• Stage 2 (of 4) in building a fully-working

distributed system from scratch
• Stage 3 will be a distributed file system
• Stage 4 will be a full distributed system

2

Why Study Peer to Peer Systems?

• First distributed systems that seriously focused
on scalability with respect to number of nodes

• P2P techniques abound in cloud computing
systems

• Key-value stores (e.g., Cassandra, Riak,
Voldemort) use Chord p2p hashing

3

Napster UI

4

A Brief History

• [6/99] Shawn Fanning (freshman Northeastern U.) releases Napster
online music service

• [12/99] RIAA sues Napster, asking $100K per download
• [3/00] 25% UWisc traffic Napster, many universities ban it
• [00] 60M users
• [2/01] US Federal Appeals Court: users violating copyright laws,

Napster is abetting this
• [9/01] Napster decides to run paid service, pay % to songwriters and

music companies
• [Today] Napster protocol is open, people free to develop opennap

clients and servers http://opennap.sourceforge.net
• Gnutella: http://www.limewire.com (deprecated)

• Peer to peer working groups: http://p2p.internet2.edu

5

http://opennap.sourceforge.net
http://www.limewire.com

What We Will Study

• Widely-deployed P2P Systems (This Lecture)
1. Napster
2. Gnutella
3. Fasttrack (Kazaa, Kazaalite, Grokster)
4. BitTorrent

• P2P Systems with Provable Properties (Next
Lecture)

1. Chord
2. Pastry
3. Kelips

6

Napster Structure

S
S

S

P

P

P
P

P

Client machines
(“Peers”)

napster.com
Servers

Store their own
files

Store a directory, i.e.,
filenames with peer pointers

Filename Info about

PennyLane.mp3 Beatles, @
128.84.92.23:1006

…..

P

7

Napster Operations

Client
• Connect to a Napster server

• Upload list of music files that you want to
share

• Server maintains list of <filename,
ip_address, portnum> tuples. Server stores
no files.

8

Napster Operations

Client (contd.)
• Search

• Send server keywords to search with
• (Server searches its list with the keywords)
• Server returns a list of hosts - <ip_address, portnum>

tuples - to client
• Client pings each host in the list to find transfer rates
• Client fetches file from best host

• All communication uses TCP (Transmission
Control Protocol)
• Reliable and ordered networking protocol

9

Napster Search

Client machines
(“Peers”)

napster.com
Servers

Store their own
files

Store peer pointers
for all files

2. All servers search their lists (ternary tree algorithm)

5. download from best host

4. ping candidates3. Response

1. QueryS
S

S

P

P

P
P

P

P

10

Joining a P2P system

• Can be used for any p2p system
• Send an http request to well-known url for that

P2P service - http://www.myp2pservice.com
• Message routed (after lookup in DNS=Domain

Name system) to introducer, a well known
server that keeps track of some recently joined
nodes in p2p system

• Introducer initializes new peers’ neighbor table

11

Problems

• Centralized server a source of congestion
• Centralized server single point of failure
• No security: plaintext messages and passwds
• napster.com declared to be responsible for users’

copyright violation
• “Indirect infringement”
• Next system: Gnutella

12

Gnutella

• Eliminate the servers
• Client machines search and retrieve amongst

themselves
• Clients act as servers too, called servents
• [3/00] release by AOL, immediately withdrawn,

but 88K users by 3/03
• Original design underwent several modifications

13

Gnutella

P

P

P

P

P
P

Servents (“Peers”)

P

Connected in an overlay graph
(== each link is an implicit Internet path)

Store their own
files

Also store
“peer pointers”

14

How do I search for my Beatles file?

• Gnutella routes different messages within the overlay
graph

• Gnutella protocol has 5 main message types
• Query (search)
• QueryHit (response to query)
• Ping (to probe network for other peers)
• Pong (reply to ping, contains address of another peer)
• Push (used to initiate file transfer)

• We’ll go into the message structure and protocol now
• All fields except IP address are in little-endian format
• Ox12345678 stored as 0x78 in lowest address byte, then 0x56 in next

higher address, and so on.

15

How do I search for my Beatles file?

Descriptor ID Payload descriptor TTL Hops Payload length

Descriptor Header

Type of payload
0x00 Ping
0x01 Pong
0x40 Push
0x80 Query
0x81 Queryhit

Decremented at
each hop,
Message dropped
when ttl=0
ttl_initial usually 7
to 10

Incremented at each hop

ID of this
search
transaction

Number of bytes of
message following
this header

0 15 16 17 18 22

Payload

Gnutella Message Header Format
16

How do I search for my Beatles file?

Minimum Speed Search criteria (keywords)

Query (0x80)

0 1 …..

Payload Format in Gnutella Query Message

17

Gnutella Search

P

P

P

P

P
P

P
Who has PennyLane.mp3?

Query’s flooded out, ttl-restricted, forwarded only once

TTL=2

18

Gnutella Search

Num. hits port ip_address speed (fileindex,filename,fsize) servent_id
0 1 3 7 11 n n+16

QueryHit (0x81) : successful result to a query

Results

Unique identifier of responder;
a function of its IP address

Info about
responder

Payload Format in Gnutella QueryHit Message

19

Gnutella Search

P

P

P

P

P
P

P
Who has PennyLane.mp3?

Successful results QueryHit’s routed on reverse path

20

Avoiding excessive traffic

• To avoid duplicate transmissions, each peer
maintains a list of recently received messages

• Query forwarded to all neighbors except peer from
which received

• Each Query (identified by DescriptorID) forwarded
only once

• QueryHit routed back only to peer from which Query
received with same DescriptorID

• Duplicates with same DescriptorID and Payload
descriptor (msg type, e.g., Query) are dropped

• QueryHit with DescriptorID for which Query not
seen is dropped

21

After receiving QueryHit messages

• Requestor chooses “best” QueryHit responder
• Initiates HTTP request directly to responder’s ip+port

GET /get/<File Index>/<File Name>/HTTP/1.0\r\n

Connection: Keep-Alive\r\n
Range: bytes=0-\r\n
User-Agent: Gnutella\r\n
\r\n

• Responder then replies with file packets after this
message:

HTTP 200 OK\r\n

Server: Gnutella\r\n
Content-type:application/binary\r\n
Content-length: 1024 \r\n
\r\n

22

After receiving QueryHit messages (2)

• HTTP is the file transfer protocol. Why?
• Because it’s standard, well-debugged, and

widely used.
• Why the “range” field in the GET request?

• To support partial file transfers.
• What if responder is behind firewall that disallows

incoming connections?

23

Dealing with Firewalls

P

P

P

P

P
P

P

Requestor sends Push to responder asking for file transfer

Has PennyLane.mp3
But behind firewall

24

Dealing with Firewalls

servent_id fileindex ip_address port

Push (0x40)

same as in
received QueryHit Address at which

requestor can accept
incoming connections

25

Dealing with Firewalls

• Responder establishes a TCP connection at
ip_address, port specified. Sends

GIV <File Index>:<Servent Identifier>/<File Name>\n\n

• Requestor then sends GET to responder (as
before) and file is transferred as explained
earlier

• What if requestor is behind firewall too?
• Gnutella gives up
• Can you think of an alternative solution?

26

Ping-Pong

• Peers initiate Ping’s periodically

• Pings flooded out like Querys, Pongs routed along reverse path
like QueryHits

• Pong replies used to update set of neighboring peers

• to keep neighbor lists fresh in spite of peers joining,
leaving and failing

Port ip_address Num. files shared Num. KB shared

Pong (0x01)

Ping (0x00)
no payload

27

Gnutella Summary

• No servers
• Peers/servents maintain “neighbors”, this forms an

overlay graph
• Peers store their own files
• Queries flooded out, ttl restricted
• QueryHit (replies) reverse path routed
• Supports file transfer through firewalls
• Periodic Ping-pong to continuously refresh neighbor lists

• List size specified by user at peer : heterogeneity means some
peers may have more neighbors

• Gnutella found to follow power law distribution:
P(#links = L) ~ (k is a constant)kL-

28

Problems

• Ping/Pong constituted 50% traffic
• Solution: Multiplex, cache and reduce frequency of

pings/pongs
• Repeated searches with same keywords

• Solution: Cache Query, QueryHit messages
• Modem-connected hosts do not have enough

bandwidth for passing Gnutella traffic
• Solution: use a central server to act as proxy for such

peers
• Another solution:

èFastTrack System (soon)

29

Problems (contd.)

• Large number of freeloaders
• 70% of users in 2000 were freeloaders
• Only download files, never upload own files

• Flooding causes excessive traffic
• Is there some way of maintaining meta-

information about peers that leads to more
intelligent routing?
è Structured Peer-to-peer systems
e.g., Chord System (coming up next lecture)

30

FastTrack

• Hybrid between Gnutella and Napster
• Takes advantage of “healthier” participants in

the system
• Underlying technology in Kazaa, KazaaLite,

Grokster
• Proprietary protocol, but some details available
• Like Gnutella, but with some peers designated as

supernodes

31

A FastTrack-like System

P
P

P

P
Peers

S

S

Supernodes
P

32

FastTrack (contd.)

• A supernode stores a directory listing a subset of nearby
(<filename,peer pointer>), similar to Napster servers

• Supernode membership changes over time
• Any peer can become (and stay) a supernode, provided it has

earned enough reputation
• Kazaalite: participation level (=reputation) of a user between 0

and 1000, initially 10, then affected by length of periods of
connectivity and total number of uploads

• More sophisticated Reputation schemes invented, especially
based on economics (See P2PEcon workshop)

• A peer searches by contacting a nearby supernode

33

BitTorrent

Tracker, per file

Peer

Peer

Peer

Peer

Website links to
.torrent

(leecher,
has some blocks) (seed)

(seed,
has full file)

(new, leecher)

1. Get tracker
2. Get peers

3. Get file blocks

(keeps track of some peers;
receives
heartbeats, joins
and leaves
from peers)

34

BitTorrent (2)

• File split into blocks (32 KB – 256 KB)
• Download Local Rarest First block policy: prefer early download of

blocks that are least replicated among neighbors
• Exception: New node allowed to pick one random neighbor: helps in

bootstrapping

• Tit for tat bandwidth usage: Provide blocks to neighbors that
provided it the best download rates
• Incentive for nodes to provide good upload rates
• Seeds do the same too

• Choking: Limit number of neighbors to which concurrent uploads
<= a number (5), i.e., the “best” neighbors
• Everyone else choked
• Periodically re-evaluate this set (e.g., every 10 s)
• Optimistic unchoke: periodically (e.g., ~30 s), unchoke a random neighbor –

helps keep unchoked set fresh
35

Announcements

• MP1 reports being graded
• MP2 out already, due 9/25 (demos on 9/26)
• HW1 due next Wednesday 2 pm (9/21)
• HW2 will be out then

36

CS 425 / ECE 428
Distributed Systems

Fall 2022
Indranil Gupta (Indy)

Lecture 8: Peer-to-peer Systems II

All slides © IG

What We Are Studying

• Widely-deployed P2P Systems
1. Napster
2. Gnutella
3. Fasttrack (Kazaa, Kazaalite, Grokster)
4. BitTorrent

• P2P Systems with Provable Properties
1. Chord
2. Pastry
3. Kelips

38

DHT=Distributed Hash Table

• A hash table allows you to insert, lookup and delete
objects with keys

• A distributed hash table allows you to do the same in a
distributed setting (objects=files)

• Performance Concerns:
• Load balancing
• Fault-tolerance
• Efficiency of lookups and inserts
• Locality

• Napster, Gnutella, FastTrack are all DHTs (sort of)
• So is Chord, a structured peer to peer system that we study

next

39

Comparative Performance

Memory Lookup
Latency

#Messages
for a lookup

Napster O(1)
(O(N)@server)

O(1) O(1)

Gnutella O(N) O(N) O(N)

40

Comparative Performance

Memory Lookup
Latency

#Messages
for a lookup

Napster O(1)
(O(N)@server)

O(1) O(1)

Gnutella O(N) O(N) O(N)

Chord O(log(N)) O(log(N)) O(log(N))

41

Chord

• Developers: I. Stoica, D. Karger, F. Kaashoek, H.
Balakrishnan, R. Morris, Berkeley and MIT

• Intelligent choice of neighbors to reduce latency and message
cost of routing (lookups/inserts)

• Uses Consistent Hashing on node’s (peer’s) address
• SHA-1(ip_address,port) à160 bit string

• Truncated to m bits

• Called peer id (number between 0 and)

• Not unique but id conflicts very unlikely

• Can then map peers to one of logical points on a circle

12 -m

m2

42

Ring of peers

N80

N112

N96

N16
0Say m=7

N32

N45

6 nodes

43

Peer pointers (1): successors

N80

0Say m=7

N32

N45

N112

N96

N16

(similarly predecessors) 44

Peer pointers (2): finger tables

45

At or to the clockwise of
Also, use (n+2i) mod 2m

What about the files?

• Filenames also mapped using same consistent hash function
• SHA-1(filename) à160 bit string (key)

• File is stored at first peer with id greater than or equal to its
key (mod)

• File cnn.com/index.html that maps to key K42 is stored at first peer

with id at or to the clockwise of 42
• Note that we are considering a different file-sharing

application here : cooperative web caching

• The same discussion applies to any other file sharing
application, including that of mp3 files.

• Consistent Hashing => with K keys and N peers, each peer stores
O(K/N) keys. (i.e., < c.K/N, for some constant c)

2m

46

Mapping Files

N80

0Say m=7

N32

N45
File with key K42
stored here

N112

N96

N16

47

Search

N80

0Say m=7

N32

N45
File cnn.com/index.html with
key K42 stored here

Who has cnn.com/index.html?
(hashes to K42)

N112

N96

N16

48

Search

N80

0

Say m=7

N32

N45
File cnn.com/index.html with
key K42 stored here

At node n, send query for key k to largest successor/finger entry <= k
if none exist, send query to successor(n)

N112

N96

N16

Who has cnn.com/index.html?
(hashes to K42)

At or to the anti-clockwise of k
(it wraps around the ring)

49

Search

N80

0

Say m=7

N32

N45

File cnn.com/index.html with
key K42 stored here

At node n, send query for key k to largest successor/finger entry <= k
if none exist, send query to successor(n)

All “arrows” are RPCs
(remote procedure calls)

N112

N96

N16

Who has cnn.com/index.html?
(hashes to K42)

50

Analysis

Search takes O(log(N)) time
Proof
• (intuition): at each step, distance between query and

peer-with-file reduces by a factor of at least 2

• (intuition): after log(N) forwardings, distance to key
is at most

• Number of node identifiers in a range of
is O(log(N)) with high probability (why? SHA-1! and
“Balls and Bins”)
So using successors in that range will be ok, using
another O(log(N)) hops

2m / 2log(N) = 2m / N

51

Next hop

Key

Here
Halfway point

Analysis (contd.)

• O(log(N)) search time holds for file
insertions too (in general for routing to
any key)
• “Routing” can thus be used as a building

block for
• All operations: insert, lookup, delete

• O(log(N)) time true only if finger and
successor entries correct

• When might these entries be wrong?
• When you have failures

52

Search under peer failures

N80

0Say m=7

N32

N45

File cnn.com/index.html with
key K42 stored here

X
X

X

Lookup fails
(N16 does not know N45)

N112

N96

N16

Who has cnn.com/index.html?
(hashes to K42)

53

Search under peer failures

N80

0Say m=7

N32

N45

File cnn.com/index.html with
key K42 stored here

X

One solution: maintain r multiple successor entries
In case of failure, use successor entries

N112

N96

N16

Who has cnn.com/index.html?
(hashes to K42)

54

Search under peer failures

• Choosing r=2log(N) suffices to maintain lookup
correctness w.h.p.(i.e., ring connected)
• Say 50% of nodes fail
• Pr(at given node, at least one successor alive)=

• Pr(above is true at all alive nodes)=
2

log2 11)
2
1(1

N
N -=-

1)11(2
1

2/
2 »=-

-
NN e

N
55

Search under peer failures (2)

N80

0Say m=7

N32

N45
File cnn.com/index.html with
key K42 stored here

X
X

Lookup fails
(N45 is dead)N112

N96

N16

Who has cnn.com/index.html?
(hashes to K42)

56

Search under peer failures (2)

N80

0Say m=7

N32

N45
File cnn.com/index.html with
key K42 stored here

X

One solution: replicate file/key at r successors and predecessors

N112

N96

N16

K42 replicated

K42 replicated

Who has cnn.com/index.html?
(hashes to K42)

57

Need to deal with dynamic changes

ü Peers fail

• New peers join

• Peers leave
• P2P systems have a high rate of churn (node join, leave and failure)

• 25% per hour in Overnet (eDonkey)

• 100% per hour in Gnutella
• Lower in managed clusters

• Common feature in all distributed systems, including wide-area (e.g.,
PlanetLab), clusters (e.g., Emulab), clouds (e.g., AWS), etc.

So, all the time, need to:

à Need to update successors and fingers, and copy keys

58

New peers joining

N80

0Say m=7

N32

N45

N112

N96

N16

N40

Introducer directs N40 to N45 (and N32)
N32 updates successor to N40
N40 initializes successor to N45, and inits fingers from it
N40 periodically talks to neighbors to update finger table

Stabilization
Protocol
(followed by
all nodes)

59

New peers joining (2)

N80

0Say m=7

N32

N45

N112

N96

N16

N40

N40 may need to copy some files/keys from N45
(files with fileid between 32 and 40)

K34,K38 60

New peers joining (3)

• A new peer affects O(log(N)) other finger
entries in the system, on average [Why?]

• Number of messages per peer join=
O(log(N)*log(N))

• Similar set of operations for dealing with
peers leaving
• For dealing with failures, also need failure

detectors (you’ve seen them!)

61

Stabilization Protocol

• Concurrent peer joins, leaves, failures might cause
loopiness of pointers, and failure of lookups
• Chord peers periodically run a stabilization algorithm

that checks and updates pointers and keys
• Ensures non-loopiness of fingers, eventual success of

lookups and O(log(N)) lookups w.h.p.
• Each stabilization round at a peer involves a constant

number of messages
• Strong stability takes stabilization rounds
• For more see [Extended paper on Chord webpage]

)(2NO

62

Churn

• When nodes are constantly joining, leaving, failing
• Significant effect to consider: traces from the Overnet system

show hourly peer turnover rates (churn) could be 25-100% of
total number of nodes in system

• Leads to excessive (unnecessary) key copying (remember that
keys are replicated)

• Stabilization algorithm may need to consume more bandwidth
to keep up

• Main issue is that files are replicated, while it might be
sufficient to replicate only meta information about files

• Alternatives
• Introduce a level of indirection, i.e., store only pointers to files (any p2p

system)
• Replicate metadata more, e.g., Kelips (later in this lecture)

63

Virtual Nodes

• Hash can get non-uniform è Bad load balancing
• Treat each node as multiple virtual nodes

behaving independently
• Each joins the system
• Reduces variance of load imbalance

64

Wrap-up Notes

• Virtual Ring and Consistent Hashing used in Cassandra,
Riak, Voldemort, DynamoDB, and other key-value stores

• Current status of Chord project:
• File systems (CFS,Ivy) built on top of Chord
• DNS lookup service built on top of Chord
• Internet Indirection Infrastructure (I3) project at UCB
• Spawned research on many interesting issues about p2p

systems

https://github.com/sit/dht/wiki
(Old: http://www.pdos.lcs.mit.edu/chord/)

65

https://github.com/sit/dht/wiki

Pastry

• Designed by Anthony Rowstron (Microsoft
Research) and Peter Druschel (Rice University)

• Assigns ids to nodes, just like Chord (using a
virtual ring)

• Leaf Set - Each node knows its successor(s) and
predecessor(s)

66

Pastry Neighbors

• Routing tables based on prefix matching
• Think of a hypercube

• Routing is thus based on prefix matching, and is
thus log(N)
• And hops are short (in the underlying

network)

67

Pastry Routing

• Consider a peer with id 01110100101. It maintains a neighbor
peer with an id matching each of the following prefixes (* =
starting bit differing from this peer’s corresponding bit):
• *
• 0*
• 01*
• 011*
• … 0111010010*

• When it needs to route to a peer, say 01110111001, it starts by
forwarding to a neighbor with the largest matching prefix, i.e.,
011101*

68

Pastry Locality

• For each prefix, say 011*, among all potential
neighbors with the matching prefix, the neighbor
with the shortest round-trip-time is selected

• Since shorter prefixes have many more
candidates (spread out throughout the Internet),
the neighbors for shorter prefixes are likely to be
closer than the neighbors for longer prefixes

• Thus, in the prefix routing, early hops are short
and later hops are longer

• Yet overall “stretch”, compared to direct Internet
path, stays short

69

Summary of Chord and Pastry

• Chord and Pastry protocols
• More structured than Gnutella
• Black box lookup algorithms
• Churn handling can get complex
• O(log(N)) memory and lookup cost

• O(log(N)) lookup hops may be high
• Can we reduce the number of hops?

70

Kelips – A 1 hop Lookup DHT

• k “affinity groups”
• k ~ √ N

• Each node hashed to
a group (hash mod k)

• Node’s neighbors
• (Almost) all other nodes

in its own affinity group
• One contact node per

foreign affinity group
• Gossip-style heartbeating …

Affinity
Group # 0

1 # k-1

129

30

15

160

76

18

167

71

Kelips Files and Metadata

• File can be stored at any
(few) node(s)

• Decouple file
replication/location
(outside Kelips) from
file querying (in Kelips)

• Each filename hashed to
a group
• All nodes in the group

replicate pointer
information, i.e., <filename,
file location>

• Spread using gossip
• Affinity group does not

store files

…
Affinity Group # 0 # 1 # k-1

129

30

15

160

76

18

167

• PennyLane.mp3 hashes to k-1
• Everyone in this group stores
<PennyLane.mp3, who-has-file>

72

Kelips Lookup

• Lookup
• Find file affinity group
• Go to your contact for

the file affinity group
• Failing that try another

of your neighbors to find
a contact

• Lookup = 1 hop (or a few)
• Memory cost O(√ N)

• 1.93 MB for 100K
nodes, 10M files

• Fits in RAM of most
workstations/laptops
today (COTS
machines)

…
Affinity Group # 0 # 1 # k-1

129

30

15

160

76

18

167

• PennyLane.mp3 hashes to k-1
• Everyone in this group stores
<PennyLane.mp3, who-has-file>

73

Kelips Soft State

• Membership lists
• Gossip-based

membership
• Within each affinity

group
• And also across affinity

groups
• O(log(N))

dissemination time
• File metadata

• Needs to be
periodically refreshed
from source node

• Times out …
Affinity Group # 0 # 1 # k-1

129

30

15

160

76

18

167

• PennyLane.mp3 hashes to k-1
• Everyone in this group stores
<PennyLane.mp3, who-has-file>

74

Chord vs. Pastry vs. Kelips

• Range of tradeoffs available
• Memory vs. lookup cost vs. background

bandwidth (to keep neighbors fresh)

75

What We Have Studied

• Widely-deployed P2P Systems
1. Napster
2. Gnutella
3. Fasttrack (Kazaa, Kazaalite, Grokster)
4. BitTorrent

• P2P Systems with Provable Properties
1. Chord
2. Pastry
3. Kelips

76

Announcements

• MP2 out already, due 9/25 (demos on 9/26)
• HW1 due next Wednesday 2 pm (9/21)
• HW2 will be out then

77

