
CS 425 / ECE 428
Distributed Systems

Fall 2022
Indranil Gupta (Indy)

Lecture 6: Failure Detection and
Membership, Grids

All slides © IG

• You’ve been put in charge of a datacenter, and your
manager has told you, “Oh no! We don’t have any failures
in our datacenter!”

• Do you believe him/her?

• What would be your first responsibility?
• Build a failure detector
• What are some things that could go wrong if you didn’t do

this?

A Challenge

2

… not the exception, in datacenters.

Say, the rate of failure of one machine (OS/disk/motherboard/network,
etc.) is once every 10 years (120 months) on average.

When you have 120 servers in the DC, the mean time to failure (MTTF)
of the next machine is 1 month.

When you have 12,000 servers in the DC, the MTTF is about once every
7.2 hours!

Soft crashes and failures are even more frequent!

Failures are the Norm

3

• You have a few options

1. Hire 1000 people, each to monitor one machine in the datacenter and
report to you when it fails.

2. Write a failure detector program (distributed) that automatically detects
failures and reports to your workstation.

Which is more preferable, and why?

To build a failure detector

4

5

Target Settings

• Process ‘group’-based systems
– Clouds/Datacenters
– Replicated servers
– Distributed databases

• Fail-stop (crash) process failures

6

Group Membership Service
Application Queries

e.g., gossip, overlays,
DHT’s, etc.

Membership
Protocol

Group
Membership List

joins, leaves, failures
of members

Unreliable
Communication

Application Process pi

Membership List

7

Two sub-protocols

Dissemination
Failure Detector

Application Process pi
Group

Membership List

Unreliable
Communication

•Complete list all the time (Strongly consistent)
•Virtual synchrony

•Almost-Complete list (Weakly consistent)
•Gossip-style, SWIM, …

•Or Partial-random list (other systems)
•SCAMP, T-MAN, Cyclon,…

Focus of this series of lecture

pj

8

Large Group: Scalability A Goal
this is us (pi)

Unreliable Communication
Network

1000’s of processes

Process Group
“Members”

9

pjI pj crashed

Group Membership Protocol

Unreliable Communication
Network

pi
Some process
finds out quickly

Failure DetectorII

DisseminationIII

Fail-stop Failures only

Next
• How do you design a group membership

protocol?

10

11

I. pj crashes
• Nothing we can do about it!
• A frequent occurrence
• Common case rather than exception
• Frequency goes up linearly with size of

datacenter

12

II. Distributed Failure Detectors:
Desirable Properties

• Completeness = each failure is detected
• Accuracy = there is no mistaken detection
• Speed
– Time to first detection of a failure

• Scale
– Equal Load on each member
– Network Message Load

13

Distributed Failure Detectors:
Properties

• Completeness
• Accuracy
• Speed
– Time to first detection of a failure

• Scale
– Equal Load on each member
– Network Message Load

Impossible together in
lossy networks [Chandra
and Toueg]

If possible, then can
solve consensus! (but
consensus is known to be
unsolvable in
asynchronous systems)

14

What Real Failure Detectors Prefer

• Completeness
• Accuracy
• Speed
– Time to first detection of a failure

• Scale
– Equal Load on each member
– Network Message Load

Guaranteed
Partial/Probabilistic

guarantee

15

What Real Failure Detectors Prefer

• Completeness
• Accuracy
• Speed
– Time to first detection of a failure

• Scale
– Equal Load on each member
– Network Message Load

Guaranteed
Partial/Probabilistic

guarantee

Time until some non-faulty
process detects the failure

16

What Real Failure Detectors Prefer

• Completeness
• Accuracy
• Speed
– Time to first detection of a failure

• Scale
– Equal Load on each member
– Network Message Load

Guaranteed
Partial/Probabilistic

guarantee

Time until some non-faulty
process detects the failure

No bottlenecks/single
failure point

17

Failure Detector Properties
• Completeness
• Accuracy
• Speed
– Time to first detection of a failure

• Scale
– Equal Load on each member
– Network Message Load

In spite of
arbitrary simultaneous
process failures

18

Centralized Heartbeating

…
pi, Heartbeat Seq. l++

pi L Hotspot

pj •Heartbeats sent periodically
•If heartbeat not received from pi within
timeout, mark pi as failed

19

Ring Heartbeating

pi, Heartbeat Seq. l++
L Unpredictable on
simultaneous multiple

failures
pi

……

pj

20

All-to-All Heartbeating

pi, Heartbeat Seq. l++

…

J Equal load per member
L Single hb loss à false

detection
pi

pj

Next
• How do we increase the robustness of all-to-all

heartbeating?

21

22

Gossip-style Heartbeating

Array of
Heartbeat Seq. l
for member subset

J Good accuracy
propertiespi

23

Gossip-Style Failure Detection

1

1 10120 66

2 10103 62

3 10098 63

4 10111 65

2

4
3

Protocol:

•Nodes periodically gossip their membership
list: pick random nodes, send it list

•On receipt, it is merged with local
membership list

•When an entry times out, member is marked
as failed

1 10118 64

2 10110 64

3 10090 58

4 10111 65

1 10120 70

2 10110 64

3 10098 70

4 10111 65

Current time : 70 at node 2

(asynchronous clocks)

Address
Heartbeat Counter

Time (local)

24

Gossip-Style Failure Detection
• If the heartbeat has not increased for more than

Tfail seconds,
the member is considered failed

• And after a further Tcleanup seconds, it will
delete the member from the list

• Why an additional timeout? Why not delete
right away?

25

• What if an entry pointing to a failed node is
deleted right after Tfail (=24) seconds?

1

1 10120 66

2 10103 62

3 10098 55

4 10111 65

2

4
3

1 10120 66

2 10110 64

3 10098 50

4 10111 65

1 10120 66

2 10110 64

4 10111 65

1 10120 66

2 10110 64

3 10098 75

4 10111 65

Current time : 75 at node 2

Gossip-Style Failure Detection

26

Analysis/Discussion
• Well-known result: a gossip takes O(log(N)) time to propagate.
• So: Given sufficient bandwidth, a single heartbeat takes O(log(N)) time to

propagate.
• So: N heartbeats take:

– O(log(N)) time to propagate, if bandwidth allowed per node is allowed to be
O(N)

– O(N.log(N)) time to propagate, if bandwidth allowed per node is only O(1)
– What about O(k) bandwidth?

• What happens if gossip period Tgossip is decreased?
• What happens to Pmistake (false positive rate) as Tfail ,Tcleanup is increased?
• Tradeoff: False positive rate vs. detection time vs. bandwidth

Next
• So, is this the best we can do? What is the best

we can do?

27

28

Failure Detector Properties …
• Completeness
• Accuracy
• Speed
– Time to first detection of a failure

• Scale
– Equal Load on each member
– Network Message Load

29

…Are application-defined Requirements

• Completeness
• Accuracy
• Speed
– Time to first detection of a failure

• Scale
– Equal Load on each member
– Network Message Load

Guarantee always
Probability PM(T)
T time units

30

• Completeness
• Accuracy
• Speed
– Time to first detection of a failure

• Scale
– Equal Load on each member
– Network Message Load

Guarantee always
Probability PM(T)
T time units

N*L: Compare this across protocols

…Are application-defined Requirements

31

All-to-All Heartbeating

pi, Heartbeat Seq. l++

…

pi Every T units

L=N/T

32

Gossip-style Heartbeating

Array of
Heartbeat Seq. l
for member subset

pi

Every tg units
=gossip period,
send O(N) gossip
message

T=logN * tg
L=N/tg=N*logN/T

• Worst case load L* per member in the group
(messages per second)
– as a function of T, PM(T), N
– Independent Message Loss probability pml

•

33

What’s the Best/Optimal we can do?

T
TPM
pml

1.
)log(
))(log(L*=

34

Heartbeating
• Optimal L is independent of N (!)
• All-to-all and gossip-based: sub-optimal

• L=O(N/T)
• try to achieve simultaneous detection at all processes
• fail to distinguish Failure Detection and Dissemination

components
ÜCan we reach this bound?
ÜKey:

Separate the two components
Use a non heartbeat-based Failure Detection Component

Next
• Is there a better failure detector?

35

36

SWIM Failure Detector Protocol

Protocol period
= T’ time units

X
K random
processes

pi

ping

ack

ping-req

ack

•random pj

X

ack

ping

•random K

pj

37

• Prob. of being pinged in T’=

• E[T] =

• Completeness: Any alive member detects failure
– Eventually
– By using a trick: within worst case O(N) protocol periods

Detection Time

1
.T'
-e
e

11 1)11(1 -- -=-- e
N

N

38

Accuracy, Load

• PM(T) is exponential in -K. Also depends on pml (and
pf)
– See paper

• for up to 15 % loss rates28
*
<

L
L 8

*
][
<

L
LE

39

SWIM Failure Detector
Parameter SWIM

First Detection Time
• Expected periods

• Constant (independent of group size)

Process Load • Constant per period
• < 8 L* for 15% loss

False Positive Rate • Tunable (via K)
• Falls exponentially as load is scaled

Completeness • Deterministic time-bounded
• Within O(log(N)) periods w.h.p.

úû
ù

êë
é
-1e
e

40

Time-bounded Completeness
• Key: select each membership element once as a

ping target in a traversal
– Round-robin pinging
– Random permutation of list after each traversal

• Each failure is detected in worst case 2N-1
(local) protocol periods

• Preserves FD properties

41

SWIM versus Heartbeating

Process Load

First Detection
Time

Constant

Constant

O(N)

O(N)

SWIM

For Fixed :
• False Positive Rate
• Message Loss Rate

Heartbeating

Heartbeating

Next
• How do failure detectors fit into the big picture

of a group membership protocol?
• What are the missing blocks?

42

43

pjI pj crashed

Group Membership Protocol

Unreliable Communication
Network

pi
Some process
finds out quickly

Failure DetectorII

DisseminationIII

Fail-stop Failures only

44

Dissemination Options
• Multicast (Hardware / IP)
– unreliable
– multiple simultaneous multicasts

• Point-to-point (TCP / UDP)
– expensive

• Zero extra messages: Piggyback on Failure
Detector messages
– Infection-style Dissemination

45

Infection-style Dissemination

Protocol period
= T time units

X

pi

ping

ack

ping-req

ack

•random pj

X

ack

ping

•random K

pj

Piggybacked
membership
information

K random
processes

46

Infection-style Dissemination
• Epidemic/Gossip style dissemination
– After protocol periods, processes would not

have heard about an update
• Maintain a buffer of recently joined/evicted processes
– Piggyback from this buffer
– Prefer recent updates

• Buffer elements are garbage collected after a while
– After protocol periods, i.e., once they’ve propagated

through the system; this defines weak consistency
)log(. Nl

)log(. Nl

€

−(2λ−2)N

47

Suspicion Mechanism
• False detections, due to
– Perturbed processes
– Packet losses, e.g., from congestion

• Indirect pinging may not solve the problem
• Key: suspect a process before declaring it as

failed in the group

48

Suspicion Mechanism
Dissmn
FD

pi

Alive

Suspected

Failed

Dissmn (Suspect pj)

Dissmn (Alive pj) Dissmn (Failed pj)

FD:: pi ping failed

Dissm
n::(S

uspect pj)
Time out

FD::pi ping success

Dissm
n::(A

live pj)

49

Suspicion Mechanism
• Distinguish multiple suspicions of a process
– Per-process incarnation number
– Inc # for pi can be incremented only by pi

• e.g., when it receives a (Suspect, pi) message
– Somewhat similar to DSDV (routing protocol in ad-hoc nets)

• Higher inc# notifications over-ride lower inc#’s
• Within an inc#: (Suspect inc #) > (Alive, inc #)
• (Failed, inc #) overrides everything else

50

SWIM In Industry
• First used in Oasis/CoralCDN
• Implemented open-source by Hashicorp Inc.
– Called “Serf”
– Later “Consul”

• Today: Uber implemented it, uses it for failure detection
in their infrastructure
– See “ringpop” system

51

Wrap Up
• Failures the norm, not the exception in datacenters
• Every distributed system uses a failure detector
• Many distributed systems use a membership service

• Ring failure detection underlies
– IBM SP2 and many other similar clusters/machines

• Gossip-style failure detection underlies
– Amazon EC2/S3 (rumored!)

Grid Computing

52

“A Cloudy History of Time”

1940
1950

1960

1970

1980

1990

2000

Timesharing Companies
& Data Processing Industry

Grids

Peer to peer systems

Clusters

The first datacenters!

PCs
(not distributed!)

Clouds and datacenters

2012

53

“A Cloudy History of Time”

1940
1950

1960

1970

1980

1990

2000

2012 CloudsGrids (1980s-2000s):
•GriPhyN (1970s-80s)
•Open Science Grid and Lambda Rail (2000s)
•Globus & other standards (1990s-2000s)

Timesharing Industry (1975):
•Market Share: Honeywell 34%, IBM 15%,
•Xerox 10%, CDC 10%, DEC 10%, UNIVAC 10%
•Honeywell 6000 & 635, IBM 370/168,

Xerox 940 & Sigma 9, DEC PDP-10, UNIVAC 1108

Data Processing Industry
- 1968: $70 M. 1978: $3.15 Billion

First large datacenters: ENIAC, ORDVAC, ILLIAC
Many used vacuum tubes and mechanical relays

Berkeley NOW Project
Supercomputers
Server Farms (e.g., Oceano)

P2P Systems (90s-00s)
•Many Millions of users
•Many GB per day

54

Example: Rapid Atmospheric Modeling System,
ColoState U

• Hurricane Georges, 17 days in Sept 1998
– “RAMS modeled the mesoscale convective complex that

dropped so much rain, in good agreement with recorded data”
– Used 5 km spacing instead of the usual 10 km
– Ran on 256+ processors

• Computation-intenstive computing (or HPC = high
performance computing)

• Can one run such a program without access to a
supercomputer?

55

Distributed Computing Resources
Wisconsin

MIT NCSA

56

An Application Coded by a Physicist
Job 0

Job 2
Job 1

Job 3

Output files of Job 0
Input to Job 2

Output files of Job 2
Input to Job 3

Jobs 1 and 2 can
be concurrent

57

An Application Coded by a Physicist

Job 2

Output files of Job 0
Input to Job 2

Output files of Job 2
Input to Job 3

May take several hours/days
4 stages of a job

Init
Stage in
Execute
Stage out
Publish

Computation Intensive,
so Massively Parallel

Several GBs

58

Scheduling Problem

MIT NCSA

Job 0
Job 2Job 1

Job 3

Wisconsin

59

2-level Scheduling Infrastructure

60

Job 0
Job 2Job 1

Job 3

MIT

HTCondor Protocol

NCSAGlobus Protocol

Wisconsin

60Some other intra-site protocol

Intra-site Protocol

Job 0

Job 3Wisconsin
HTCondor Protocol

Internal Allocation & Scheduling
Monitoring
Distribution and Publishing of Files

61

Condor (now HTCondor)
• High-throughput computing system from U. Wisconsin Madison
• Belongs to a class of “Cycle-scavenging” systems

– SETI@Home and Folding@Home are other systems in this category

Such systems
• Run on a lot of workstations
• When workstation is free, ask site’s central server (or Globus) for tasks
• If user hits a keystroke or mouse click, stop task

– Either kill task or ask server to reschedule task
• Can also run on dedicated machines

62

Inter-site Protocol

Job 0

Job 2
Job 1

Job 3
Wisconsin

MIT NCSA
Internal structure of different

sites invisible to Globus

External Allocation & Scheduling
Stage in & Stage out of Files 63

Globus Protocol

Globus
• Globus Alliance involves universities, national US research labs, and some

companies
• Standardized several things, especially software tools
• Separately, but related: Open Grid Forum
• Globus Alliance has developed the Globus Toolkit

http://toolkit.globus.org/toolkit/

64

http://toolkit.globus.org/toolkit/

Globus Toolkit
• Open-source
• Consists of several components

– GridFTP: Wide-area transfer of bulk data
– GRAM5 (Grid Resource Allocation Manager): submit, locate, cancel, and

manage jobs
• Not a scheduler
• Globus communicates with the schedulers in intra-site protocols like HTCondor

or Portable Batch System (PBS)
– RLS (Replica Location Service): Naming service that translates from a

file/dir name to a target location (or another file/dir name)
– Libraries like XIO to provide a standard API for all Grid IO functionalities
– Grid Security Infrastructure (GSI)

65

Security Issues
• Important in Grids because they are federated, i.e., no single entity controls the

entire infrastructure

• Single sign-on: collective job set should require once-only user authentication
• Mapping to local security mechanisms: some sites use Kerberos, others using Unix
• Delegation: credentials to access resources inherited by subcomputations, e.g., job 0

to job 1
• Community authorization: e.g., third-party authentication

• These are also important in clouds, but less so because clouds are typically run
under a central control

• In clouds the focus is on failures, scale, on-demand nature

66

Summary
• Grid computing focuses on computation-intensive computing

(HPC)
• Though often federated, architecture and key concepts have a

lot in common with that of clouds
• Are Grids/HPC converging towards clouds?

– E.g., Compare OpenStack and Globus

67

Announcements
• MP1: Due this Sunday, demos Monday
– VMs distributed: see Piazza
– Demo signup sheet: soon on Piazza
– Demo details: see Piazza
• Make sure you print individual and total linecounts

• Check Piazza often! It’s where all the
announcements are at!

68

