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• You’ve been put in charge of a datacenter, and your 
manager has told you, “Oh no! We don’t have any failures 
in our datacenter!”

• Do you believe him/her? 

• What would be your first responsibility?
• Build a failure detector
• What are some things that could go wrong if you didn’t do 

this?

A Challenge

2



… not the exception, in datacenters.

Say, the rate of failure of one machine (OS/disk/motherboard/network, 
etc.) is once every 10 years (120 months) on average.

When you have 120 servers in the DC, the mean time to failure (MTTF) 
of the next machine is 1 month.

When you have 12,000 servers in the DC, the MTTF is about once every 
7.2 hours!

Soft crashes and failures are even more frequent!

Failures are the Norm
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• You have a few options

1. Hire 1000 people, each to monitor one machine in the datacenter and 
report to you when it fails.

2. Write a failure detector program (distributed) that automatically detects 
failures and reports to your workstation.

Which is more preferable, and why?

To build a failure detector
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Target Settings

• Process ‘group’-based systems
– Clouds/Datacenters 
– Replicated servers
– Distributed databases

• Fail-stop (crash) process failures
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Group Membership Service
Application Queries

e.g., gossip, overlays, 
DHT’s, etc.

Membership
Protocol

Group 
Membership List

joins, leaves, failures
of members

Unreliable 
Communication

Application Process pi

Membership List
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Two sub-protocols

Dissemination
Failure Detector

Application Process pi
Group 

Membership List

Unreliable 
Communication

•Complete list all the time (Strongly consistent)
•Virtual synchrony

•Almost-Complete list (Weakly consistent)
•Gossip-style, SWIM, …

•Or Partial-random list (other systems)
•SCAMP, T-MAN, Cyclon,…

Focus of this series of lecture

pj
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Large Group: Scalability A Goal
this is us (pi)

Unreliable Communication
Network

1000’s of processes

Process Group
“Members”
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pjI pj crashed 

Group Membership Protocol

Unreliable Communication
Network

pi
Some process 
finds out quickly

Failure DetectorII

DisseminationIII

Fail-stop Failures only



Next
• How do you design a group membership 

protocol?
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I. pj crashes 
• Nothing we can do about it! 
• A frequent occurrence
• Common case rather than exception
• Frequency goes up linearly with size of 

datacenter
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II. Distributed Failure Detectors: 
Desirable Properties

• Completeness = each failure is detected
• Accuracy = there is no mistaken detection
• Speed
– Time to first detection of a failure

• Scale
– Equal Load on each member
– Network Message Load



13

Distributed Failure Detectors: 
Properties

• Completeness
• Accuracy
• Speed
– Time to first detection of a failure

• Scale
– Equal Load on each member
– Network Message Load

Impossible together in 
lossy networks [Chandra
and Toueg]

If possible, then can 
solve consensus! (but 
consensus is known to be 
unsolvable in 
asynchronous systems)
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What Real Failure Detectors Prefer

• Completeness
• Accuracy
• Speed
– Time to first detection of a failure

• Scale
– Equal Load on each member
– Network Message Load

Guaranteed 
Partial/Probabilistic

guarantee
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What Real Failure Detectors Prefer

• Completeness
• Accuracy
• Speed
– Time to first detection of a failure

• Scale
– Equal Load on each member
– Network Message Load

Guaranteed 
Partial/Probabilistic

guarantee

Time until some non-faulty 
process detects the failure
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What Real Failure Detectors Prefer

• Completeness
• Accuracy
• Speed
– Time to first detection of a failure

• Scale
– Equal Load on each member
– Network Message Load

Guaranteed 
Partial/Probabilistic

guarantee

Time until some non-faulty
process detects the failure

No bottlenecks/single 
failure point
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Failure Detector Properties
• Completeness
• Accuracy
• Speed
– Time to first detection of a failure

• Scale
– Equal Load on each member
– Network Message Load

In spite of 
arbitrary simultaneous 
process failures
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Centralized Heartbeating

…
pi, Heartbeat Seq. l++ 

pi L Hotspot

pj •Heartbeats sent periodically
•If heartbeat not received from pi within
timeout, mark pi as failed
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Ring Heartbeating

pi, Heartbeat Seq. l++
L Unpredictable on
simultaneous multiple 

failures
pi

……

pj
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All-to-All Heartbeating

pi, Heartbeat Seq. l++

…

J Equal load per member
L Single hb loss à false 

detection
pi

pj



Next
• How do we increase the robustness of all-to-all 

heartbeating?
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Gossip-style Heartbeating

Array of 
Heartbeat Seq. l
for member subset

J Good accuracy 
propertiespi
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Gossip-Style Failure Detection

1

1 10120 66

2 10103 62

3 10098 63

4 10111 65

2

4
3

Protocol: 

•Nodes periodically gossip their membership 
list: pick random nodes, send it list

•On receipt, it is merged with local 
membership list

•When an entry times out, member is marked 
as failed

1 10118 64

2 10110 64

3 10090 58

4 10111 65

1 10120 70

2 10110 64

3 10098 70

4 10111 65

Current time : 70 at node 2

(asynchronous clocks)

Address
Heartbeat Counter

Time (local)
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Gossip-Style Failure Detection
• If the heartbeat has not increased for more than 

Tfail seconds, 
the member is considered failed

• And after a further Tcleanup seconds, it will 
delete the member from the list

• Why an additional timeout? Why not delete 
right away?
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• What if an entry pointing to a failed node is 
deleted right after Tfail (=24) seconds?

1

1 10120 66

2 10103 62

3 10098 55

4 10111 65

2

4
3

1 10120 66

2 10110 64

3 10098 50

4 10111 65

1 10120 66

2 10110 64

4 10111 65

1 10120 66

2 10110 64

3 10098 75

4 10111 65

Current time : 75 at node 2

Gossip-Style Failure Detection
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Analysis/Discussion
• Well-known result: a gossip takes O(log(N)) time to propagate.
• So: Given sufficient bandwidth, a single heartbeat takes O(log(N)) time to 

propagate. 
• So: N heartbeats take: 

– O(log(N)) time to propagate, if bandwidth allowed per node is allowed to be 
O(N)

– O(N.log(N)) time to propagate, if bandwidth allowed per node is only O(1)
– What about O(k) bandwidth?

• What happens if gossip period Tgossip is decreased? 
• What happens to Pmistake (false positive rate) as Tfail ,Tcleanup is increased? 
• Tradeoff: False positive rate vs. detection time vs. bandwidth



Next
• So, is this the best we can do? What is the best 

we can do?
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Failure Detector Properties …
• Completeness
• Accuracy
• Speed
– Time to first detection of a failure

• Scale
– Equal Load on each member
– Network Message Load
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…Are application-defined Requirements

• Completeness
• Accuracy
• Speed
– Time to first detection of a failure

• Scale
– Equal Load on each member
– Network Message Load

Guarantee always
Probability PM(T)
T time units
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• Completeness
• Accuracy
• Speed
– Time to first detection of a failure

• Scale
– Equal Load on each member
– Network Message Load

Guarantee always
Probability PM(T)
T time units

N*L: Compare this across protocols

…Are application-defined Requirements
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All-to-All Heartbeating

pi, Heartbeat Seq. l++

…

pi Every T units

L=N/T
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Gossip-style Heartbeating

Array of 
Heartbeat Seq. l
for member subset

pi

Every tg units
=gossip period,
send O(N) gossip
message

T=logN * tg
L=N/tg=N*logN/T



• Worst case load L* per member in the group 
(messages per second)
– as a function of T, PM(T), N
– Independent Message Loss probability pml

•
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What’s the Best/Optimal we can do?

T
TPM
pml

1.
)log(
))(log(L*=
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Heartbeating
• Optimal L is independent of N (!)
• All-to-all and gossip-based: sub-optimal

• L=O(N/T)
• try to achieve simultaneous detection at all processes
• fail to distinguish Failure Detection and Dissemination

components
ÜCan we reach this bound?
ÜKey:

Separate the two components
Use a non heartbeat-based Failure Detection Component



Next
• Is there a better failure detector?
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SWIM Failure Detector Protocol

Protocol period
= T’ time units

X
K random
processes

pi

ping

ack

ping-req

ack

•random pj

X

ack

ping

•random K

pj
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• Prob. of being pinged in T’=

• E[T ] = 

• Completeness: Any alive member detects failure
– Eventually
– By using a trick: within worst case O(N) protocol periods

Detection Time

1
.T'
-e
e

11 1)11(1 -- -=-- e
N

N
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Accuracy, Load

• PM(T) is exponential in -K. Also depends on pml (and 
pf )
– See paper

• for up to 15 % loss rates28
*
<

L
L 8

*
][
<

L
LE
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SWIM Failure Detector
Parameter SWIM

First Detection Time
• Expected                    periods

• Constant (independent of group size)

Process Load • Constant per period
• < 8 L* for 15% loss

False Positive Rate • Tunable (via K)
• Falls exponentially as load is scaled

Completeness • Deterministic time-bounded
• Within O(log(N)) periods w.h.p.

úû
ù

êë
é
-1e
e
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Time-bounded Completeness
• Key: select each membership element once as a 

ping target in a traversal
– Round-robin pinging
– Random permutation of list after each traversal

• Each failure is detected in worst case 2N-1 
(local) protocol periods

• Preserves FD properties
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SWIM versus Heartbeating

Process Load

First Detection
Time

Constant

Constant

O(N)

O(N)

SWIM

For Fixed :
• False Positive Rate
• Message Loss Rate

Heartbeating

Heartbeating



Next
• How do failure detectors fit into the big picture 

of a group membership protocol? 
• What are the missing blocks?
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pjI pj crashed 

Group Membership Protocol

Unreliable Communication
Network

pi
Some process 
finds out quickly

Failure DetectorII

DisseminationIII

Fail-stop Failures only
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Dissemination Options
• Multicast (Hardware / IP)
– unreliable 
– multiple simultaneous multicasts

• Point-to-point (TCP / UDP)
– expensive

• Zero extra messages: Piggyback on Failure 
Detector messages
– Infection-style Dissemination
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Infection-style Dissemination

Protocol period
= T time units

X

pi

ping

ack

ping-req

ack

•random pj

X

ack

ping

•random K

pj

Piggybacked 
membership 
information

K random
processes



46

Infection-style Dissemination
• Epidemic/Gossip style dissemination
– After   protocol periods, processes would not 

have heard about an update
• Maintain a buffer of recently joined/evicted processes
– Piggyback from this buffer
– Prefer recent updates

• Buffer elements are garbage collected after a while
– After protocol periods, i.e., once they’ve propagated 

through the system; this defines weak consistency
)log(. Nl

)log(. Nl

€ 

−(2λ−2)N



47

Suspicion Mechanism
• False detections, due to
– Perturbed processes
– Packet losses, e.g., from congestion

• Indirect pinging may not solve the problem
• Key: suspect a process before declaring it as 

failed in the group
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Suspicion Mechanism
Dissmn
FD

pi

Alive

Suspected

Failed

Dissmn  (Suspect pj)

Dissmn  (Alive pj) Dissmn  (Failed pj)

FD:: pi ping failed

Dissm
n::(S

uspect pj)
Time out

FD::pi ping success

Dissm
n::(A

live pj)
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Suspicion Mechanism
• Distinguish multiple suspicions of a process
– Per-process incarnation number
– Inc # for pi can be incremented only by pi

• e.g., when it receives a (Suspect, pi) message
– Somewhat similar to DSDV (routing protocol in ad-hoc nets)

• Higher inc# notifications over-ride lower inc#’s
• Within an inc#: (Suspect inc #) > (Alive, inc #)
• (Failed, inc #) overrides everything else
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SWIM In Industry
• First used in Oasis/CoralCDN
• Implemented open-source by Hashicorp Inc.
– Called “Serf”
– Later “Consul”

• Today: Uber implemented it, uses it for failure detection 
in their infrastructure
– See “ringpop” system
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Wrap Up
• Failures the norm, not the exception in datacenters
• Every distributed system uses a failure detector
• Many distributed systems use a membership service

• Ring failure detection underlies
– IBM SP2 and many other similar clusters/machines

• Gossip-style failure detection underlies
– Amazon EC2/S3 (rumored!)



Grid Computing
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“A Cloudy History of Time”

1940
1950

1960

1970

1980

1990

2000

Timesharing Companies
& Data Processing Industry 

Grids

Peer to peer systems

Clusters

The first datacenters!

PCs
(not distributed!)

Clouds and datacenters

2012
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“A Cloudy History of Time”

1940
1950

1960

1970

1980

1990

2000

2012 CloudsGrids (1980s-2000s):
•GriPhyN (1970s-80s)
•Open Science Grid and Lambda Rail (2000s)
•Globus & other standards (1990s-2000s)

Timesharing Industry (1975):
•Market Share: Honeywell 34%, IBM 15%, 
•Xerox 10%, CDC 10%, DEC 10%, UNIVAC 10%
•Honeywell 6000 & 635, IBM 370/168, 

Xerox 940 & Sigma 9, DEC PDP-10, UNIVAC 1108

Data Processing Industry 
- 1968: $70 M. 1978: $3.15 Billion

First large datacenters: ENIAC, ORDVAC, ILLIAC
Many used vacuum tubes and mechanical relays

Berkeley NOW Project
Supercomputers
Server Farms (e.g., Oceano)

P2P Systems (90s-00s)
•Many Millions of users
•Many GB per day
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Example: Rapid Atmospheric Modeling System, 
ColoState U

• Hurricane Georges, 17 days in Sept 1998
– “RAMS modeled the mesoscale convective complex that 

dropped so much rain, in good agreement with recorded data”
– Used 5 km spacing instead of the usual 10 km
– Ran on 256+ processors

• Computation-intenstive computing (or HPC = high 
performance computing)

• Can one run such a program without access to a 
supercomputer?
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Distributed Computing Resources
Wisconsin

MIT NCSA
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An Application Coded by a Physicist
Job 0

Job 2
Job 1

Job 3

Output files of Job 0
Input to Job 2

Output files of Job 2
Input to Job 3

Jobs 1 and 2 can 
be concurrent
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An Application Coded by a Physicist

Job 2

Output files of Job 0
Input to Job 2

Output files of Job 2
Input to Job 3

May take several hours/days
4 stages of a job

Init
Stage in
Execute
Stage out
Publish

Computation Intensive, 
so Massively Parallel

Several GBs
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Scheduling Problem

MIT NCSA

Job 0
Job 2Job 1

Job 3

Wisconsin
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2-level Scheduling Infrastructure
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Job 0
Job 2Job 1

Job 3

MIT

HTCondor Protocol

NCSAGlobus Protocol

Wisconsin

60Some other intra-site protocol



Intra-site Protocol

Job 0

Job 3Wisconsin
HTCondor Protocol

Internal Allocation & Scheduling
Monitoring
Distribution and Publishing of Files
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Condor (now HTCondor)
• High-throughput computing system from U. Wisconsin Madison
• Belongs to a class of “Cycle-scavenging” systems 

– SETI@Home and Folding@Home are other systems in this category

Such systems 
• Run on a lot of workstations
• When workstation is free, ask site’s central server (or Globus) for tasks
• If user hits a keystroke or mouse click, stop task

– Either kill task or ask server to reschedule task
• Can also run on dedicated machines
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Inter-site Protocol

Job 0

Job 2
Job 1

Job 3
Wisconsin

MIT NCSA
Internal structure of different

sites invisible to Globus

External Allocation & Scheduling
Stage in & Stage out of Files 63

Globus Protocol



Globus
• Globus Alliance involves universities, national US research labs, and some 

companies
• Standardized several things, especially software tools
• Separately, but related: Open Grid Forum
• Globus Alliance has developed the Globus Toolkit

http://toolkit.globus.org/toolkit/
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Globus Toolkit
• Open-source
• Consists of several components

– GridFTP: Wide-area transfer of bulk data
– GRAM5 (Grid Resource Allocation Manager): submit, locate, cancel, and 

manage jobs
• Not a scheduler
• Globus communicates with the schedulers in intra-site protocols like HTCondor

or Portable Batch System (PBS)
– RLS (Replica Location Service): Naming service that translates from a 

file/dir name to a target location (or another file/dir name)
– Libraries like XIO to provide a standard API for all Grid IO functionalities
– Grid Security Infrastructure (GSI)
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Security Issues
• Important in Grids because they are federated, i.e., no single entity controls the 

entire infrastructure 

• Single sign-on: collective job set should require once-only user authentication
• Mapping to local security mechanisms: some sites use Kerberos, others using Unix
• Delegation: credentials to access resources inherited by subcomputations, e.g., job 0 

to job 1
• Community authorization: e.g., third-party authentication

• These are also important in clouds, but less so because clouds are typically run 
under a central control

• In clouds the focus is on failures, scale, on-demand nature
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Summary
• Grid computing focuses on computation-intensive computing 

(HPC)
• Though often federated, architecture and key concepts have a 

lot in common with that of clouds
• Are Grids/HPC converging towards clouds? 

– E.g., Compare OpenStack and Globus
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Announcements
• MP1:  Due this Sunday, demos Monday 
– VMs distributed: see Piazza
– Demo signup sheet: soon on Piazza
– Demo details: see Piazza
• Make sure you print individual and total linecounts

• Check Piazza often! It’s where all the 
announcements are at!
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