Programming Languages and
Compilers (CS 421)

i

L
Elsa L Gunter
2112 SC, UIUC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

11/16/23

‘ Programming Languages & Compilers

[l : Language Semantics

Lambda
Calculus

Axiomatic
Semantics

Operational

Semantics

11/16/23 3

i Lambda Calculus - Motivation

= Aim is to capture the essence of
functions, function applications, and
evaluation

= A—calculus is a theory of computation

= "The Lambda Calculus: Its Syntax and
Semantics”. H. P. Barendregt. North
Holland, 1984

11/16/23

i Lambda Calculus - Motivation

= All sequential programs may be viewed
as functions from input (initial state and
input values) to output (resulting state
and output values).

= A-calculus is a mathematical formalism
of functions and functional
computations

= Two flavors: typed and untyped

11/16/23 5

i Untyped A-Calculus

= Only three kinds of
eXpressions.
=Variables: X, y, z, w, ...
= Abstraction: A X. e
(Function creation, think fun x -> €)
= Application: e; e,

" Parenthesized expression: (e)

11/16/23

i Untyped A-Calculus Grammar

= Formal BNF Grammar:
= <expression> ::= <variable>
| <abstraction>
| <application>
| (<expression>)
= <abstraction>
::= A<variable>.<expression>
= <application>
;= <expression> <expression>

11/16/23 7

;‘ Untyped A-Calculus Terminology

= Occurrence: a location of a subterm in a
term

= Variable binding: A x. e is a binding of x in e

= Bound occurrence: all occurrences of x in
A X €

= Free occurrence: one that is not bound

= Scope of binding: in A x. €, all occurrences in
e not in a subterm of the form A x. e’ (same
X)

= Free variables: all variables having free
occurrences in a term

11/16/23 8

‘ Example

= Label occurrences and scope:

(AX.YAY. Y (AX.XY) X)X
12 34 56789

11/16/23 9

‘ Example

= Label occurrences and scope:

] fre free
(XX.yny\y(kxf.\xy)x))l(
12 34 56789

11/16/23 10

i Untyped A-Calculus

= How do you compute with the
A-calculus?
= Roughly speaking, by substitution:

s (A x. e1) e, =>%e[e,/x]

= * Modulo all kinds of subtleties to avoid
free variable capture

11/16/23 12

‘ Transition Semantics for A-Calculus

E->FE"’
EE -->F " F
= Application (version 1 - Lazy Evaluation)
(Lx.E) E"--> HE' /X
= Application (version 2 - Eager Evaluation)
E -->F"’
(Ax.E)E ->0\x.EFE’

(A x. £) V--> AV/X]

V - variable or abstraction (value)

11/16/23 13

:-‘ How Powerful is the Untyped A-Calculus?

= The untyped A-calculus is Turing
Complete
= Can express any sequential computation
= Problems:
= How to express basic data: booleans,
integers, etc?
= How to express recursion?

= Constants, if_then_else, etc, are
conveniences; can be added as syntactic
sugar

11/16/23 14

i Typed vs Untyped A-Calculus

= The pure \-calculus has no notion of
type: (f f) is a legal expression

= Types restrict which applications are
valid

= Types are not syntactic sugar! They
disallow some terms

= Simply typed A-calculus is less powerful
than the untyped A-Calculus: NOT
Turing Complete (no recursion)

11/16/23 15

i a. Conversion

1. o-conversion:

2> A X. exp —-a--> LY. (exp [y/x])
3. Provided that

1.y is not free in exp

2. No free occurrence of x in exp
becomes bound in exp when
replaced by y

AX.X(AY.XY)-X->Ay.y(AYy.YY)

11/16/23 17

i a Conversion Non-Examples

1. Error: y is not free in term second
XX.XY><> LY. VY
2. Error: free occurrence of x becomes
bound in wrong way when replaced by y
AXAY. --> . .
X A Y. XY, > Ay, Y. VY
exp exp[y/x]
But Ax.(Ay.y)X—-a—->ry.(AYy.y)Yy
Andry. (LY. y) Yy —a—-> A X. (LY. y) X

11/16/23 18

i Congruence

= Let ~ be a relation on lambda
terms. ~ is a congruence if

= it is an equivalence relation

= If e; ~ e, then
= (eey) ~(eey)and (ee) ~ (e €)
= AX. € ~VAX. €

11/16/23 20

i o Equivalence

= o equivalence is the smallest
congruence containing o
conversion

= One usually treats a-equivalent
terms as equal - i.e. use «
equivalence classes of terms

11/16/23 21

Example

Show: A x. (A y.yX) X ~a~ Ay. (A X. XYy) Yy
s AX. (AY.YyX)X--a—->Arz (Ay.yYyZ)Z SO
AX.(AYy.yX)Xx~va~v A zZ. (MY Y 2Z)Z
s (AY.yY2)--a--> (A X.X2Z) SO
(Ay.yz) ~a~ (A X.XZ) SO
(Ay.yz)z~a~ (A X.XZ)ZSO
rz.(Ay.yz)z~a~v hz. (A X.X2Z) Z
s AZ.(AX.XZ)Z-a—->AY. (A X.XY)Yy SO
AMz.(Ax.XxZ2)Z~a~ A Y. (A X XY)Y
B AX. (AY. ¥y X)X ~a~ Ay, (A X. XY)Y

11/16/23 22

i Substitution

= Defined on a-equivalence classes of
terms

= P [N / x] means replace every free
occurrence of x in P by N
= P called redex; N called residue
= Provided that no variable free in P
becomes bound in P [N / x]
= Rename bound variables in P to avoid
capturing free variables of N

11/16/23 24

i Substitution

= X[N/x]=N
sy[N/Xx]=yify=x
= (€1 &) [N/ x]=((e,[N/x])(e;[N/x]))
s(AX.€)[N/x]=(AX.€)
=(hy.€)[N/x]=21y.(e[N/x])
provided y # x and y not free in N
= Rename y in redex if necessary

11/16/23 25

i Example

(Ay.y2) (A x.xy)/z] =7
= Problems?
= Z in redex in scope of y binding
= y free in the residue
= (LY. y2)[(AX.XY) /2] -a-->
(Aww2)[(Ax.xy)/z] =
AW. W (AX. XY)

11/16/23 26

;‘ Example

= Only replace free occurrences
s(Ay.yz(Lz2.2)[(Ax.X)/ 2] =
LY.y (Ax.x) (A z 2)
Not
LY.y (A x.xX) (A z. (XX X))

11/16/23 27

i B reduction

= BRule: (A X.P)N--p-->P[N/x]

= Essence of computation in the lambda
calculus

= Usually defined on a-equivalence
classes of terms

11/16/23 28

i Example

s(AMZ.(AX.XYy)2) (LY. Yy 2)
B> (A xX. xy) (L Y.y 2)
<> (hy.y2)y —p->yz

s (A X X X) (A% XX)
=-B--> (A X. X X) (A X. X X)
--B--> (A X. X X) (A X. X X) ==B--> ...

11/16/23 29

;‘ o B Equivalence

= o B equivalence is the smallest
congruence containing o equivalence
and B reduction

» A term is in normal form if no subterm
is a equivalent to a term that can be
reduced

= Hard fact (Church-Rosser): if e; and e,
are ap-equivalent and both are normal
forms, then they are a equivalent

11/16/23

30

i Order of Evaluation

= Not all terms reduce to normal forms

= Not all reduction strategies will produce
a normal form if one exists

11/16/23 32

i Lazy evaluation:

= Always reduce the left-most application
in @ top-most series of applications (i.e.
Do not perform reduction inside an
abstraction)

= Stop when term is not an application, or
left-most application is not an
application of an abstraction to a term

11/16/23

33

i Example 1

Az (A% X)) (Ay.yy) (y.yy)
= Lazy evaluation:

= Reduce the left-most application:

Az (A% X)) (Ay. YY) (Ay.yy)
--p--> (A X. X)

11/16/23 34

i Eager evaluation

= (Eagerly) reduce left of top application
to an abstraction

= Then (eagerly) reduce argument
= Then B-reduce the application

11/16/23

35

i Example 1

s (A (X XDy YY) Ay yy)
= Eager evaluation:

= Reduce the rator of the top-most application to
an abstraction: Done.

= Reduce the argument:

s (A (X XNy YY) Ay yy)
B> (A Z. (A X)) Y- YY) by yy)
B> (A Z. (A X XN Y- YY) Ry yy))-.

11/16/23 36

i Example 2

s (AX XX (LY. YY) (2 2))

= Lazy evaluation:

A XX X)(Ay.yy) (z2)--p-->

11/16/23 37

i Example 2

= (A X XX)((AY. YY) (A2 2)
= Lazy evaluation:

XX XLy, v Y) (2. 2)) -p-->

11/16/23 38

i Example 2

= (AXXX)((A Y. YY) (A2 2))

= Lazy evaluation:

A X KK yY. YY) (A z 2)) --p-->
((Ay.y y) Gz)((Ly.y ¥Y)(rz2)

11/16/23 39

pomole 2

= (AXXX)((A Y- YY) (22 2))
= Lazy evaluation:

A XX X)Ly YY) (hz 2)) —-p-->
((Ly.y y)Oz.2)|(hy.y Y) (L2 2)

11/16/23 40

i Example 2

s (AXXX)((LY. YY) (L2 2)
= Lazy evaluation:

Ax.x x)(Ay. YY) Az 2)—-p-->
(Ay.MM) vz 2) (Ly.y ¥Y)(z2)

11/16/23 41

i Example 2

= (A x X)L y.yy) (hz 2)
= Lazy evaluation:

Ax.x x)((Ay.yy) Az 2)--p-->
((Ay. M) A z2)) ((Ly.y y)(rz2)
~B--> (A z. Z)[(Az. zZP((L y.y ¥) (A 2. 2))

11/16/23 42

i Example 2

s (AX. XxX)((Ay.yy) (M z 2)
= Lazy evaluation:

Ax.x x)(Ay.yy) Az 2) --p-->
((Ay.yy)rz.2))((hy.y v)(hz 2)
~B-->{((rz.2) Lz 2))(Ly.y y) (A 2z 2)

11/16/23 43

i Example 2

s (AX XX)((Ay.yy) (A z 2))
= Lazy evaluation:

Ax.x x)(ry.yy) (A z 2)) --B-->
((Ay.y y)rz.2)) ((Ay.y y)(rz 2)
B> (rz[z]) Az 2))(Ly.y y) (A z 2))

11/16/23 44

i Example 2

s (AX. xX)((Ay.yy) (M z 2)
= Lazy evaluation:

Ax.x x)(ry.yy) (A z 2)) -p-->
((Ay.yy)rz.2)((hy.y v)(hz 2)
B> ((r z.[2]) .z) y. ¥ ¥) (+ 2 2))
--p--> ((Ly.y y)(rz.2)

11/16/23 45

i Example 2

s (A XXX (LY. YY) (hz 2))
» Lazy evaluation:

A X x X)Ly YY) (hz 2)) --p-->

((Ay.yy)rz2)((Ay.y y)(z2)

B->((rz.z)rz2))((Ay. Yy ¥Y) (rz2)
B> (A z.[Z) (A y.y V) (rz 2)) —-B-->
(Ay.y y)(rzz)

11/16/23 46

i Example 2

= (A xX) (1 y.yy) (hz 2))

= Lazy evaluation:

(A x.x x)((Ay.yy) (rz 2)--p-->
(yyy)zz)((ry.y y)(rz2)

) (A z. 2} y.y y) (hz 2))
—p-- ((hy.y y) Oz 2)--p-->

(Ay.yy)(rz2z)|

11/16/23 47

i Example 2

= (A x X)L y.yy) (hz 2)
= Lazy evaluation:

(Ax.x x)(hy.yy) (A z 2)) --p-->
((KK Y.y YY)z) ((hy.y y)(rz2)

) (A z. WA Y.y ¥) (A2 2))
--B-- (Ay.y y)®z2)--p->

(Ay.yy)Az.z)p~ Lz Z

11/16/23 48

porple2

s(AX XX)((AY. YY) (A z 2)
= Eager evaluation:

(A x. x X)Ly yy) (rz Z))Iﬂ%->

(Ax.x)|((rz.z) Nz 2))=p-->

(1 x. x X[z P>
Az.2)(Az.2) B> Lz Z

11/16/23

49

*

Extra Material

11/16/23 51

i Untyped A-Calculus

= Only three kinds of expressions:

= Variables: x, y, z, w, ...

= Abstraction: A x. e
(Function creation)

= Application: e; e,

11/16/23

53

i How to Represent (Free) Data Structures
(First Pass - Enumeration Types)

= Suppose t is a type with 77 constructors:
C,...,G, (no arguments)

= Represent each term as an abstraction:
mlet G— A Xy . X X

= Think: you give me what to return in
each case (think match statement) and
I'll return the case for the /th
constructor

11/16/23 54

‘ How to Represent Booleans

= bool = True | False

mTrue 5> A X AX. X3 =, AX.AY. X
m False 5> A X A X X =, AX.AY.Y
= Notation

= Will write

A Xy X, € FfOF A Xq. o AX. €
e;e,..e, for(...(e;e)...e,)

11/16/23

55

‘ Functions over Enumeration Types

= Write a “match” function
= match e with G, -> x4

| ...
| Cn -> X
— A X{ ... X € XX,

= Think: give me what to do in each case and
give me a case, and I’ Il apply that case

11/16/23 56

i Functions over Enumeration Types

s type r =C|...|C,
= match e with C; -> x;

| G, -> X,
m matchr = A Xy ... X, €. € X;...X,

= e = expression (single constructor)
X; is returned if e = G

11/16/23 57

‘ match for Booleans

= bool = True | False
mTrue - A X;X. X3 =, AXY. X
mFalse > A X X. X, =, AXY.Yy

= match,, = ?

11/16/23 58

‘ match for Booleans

= bool = True | False
mTrue > A Xy Xp. X3 =, AXY.X
m False > A X %. X, =, AXY.Yy

= Match,,,,= A Xy X, €. € Xy X,
=, AXyb.bxy

11/16/23 59

;‘ How to Write Functions over Booleans

= if b then x; else x, —»
= if_then_else b x; x, = b x; X,
= if_then_else=A b Xx; X, .bX; X

11/16/23 60

‘ How to Write Functions over Booleans

= Alternately:
= if bthen x; else x, =
match b with True -> x, | False -> x, —
matchpg X4 X, b =
(Ax; X b.bXxy X)Xy x;b=bx;x
= if _then_else
= L b X; X,. (matchyy X; X, b)
=AbX; X WXy X3 b.bXy X)Xy X b
= A b Xx; X bxx,

11/16/23 61

‘ Example:

not b

= match b with True -> False | False -> True
— (matchy,,) False True b
=(AXxyXb.bx;%)(Axy.y)(Axy.x)b
=b (A xYy.y)AXY.X)

snot=Ab.b(Axy.y)(AXYy.X)
= Try and, or

11/16/23 62

and or

11/16/23 63

i How to Represent (Free) Data Structures
(Second Pass - Union Types)

= Suppose 1 is a type with 77 constructors:
type T = CI t.l] tlkl |C/7tl71 tnm,
= Represent each term as an abstraction:

w Gl by A X X X Gy

| C;ﬁ;\, tl.] e Z'IJIXI Xn . Xi tl.] ese t/],
= Think: you need to give each constructor
its arguments fisrt

11/16/23 64

‘ How to Represent Pairs

= Pair has one constructor (comma) that takes
two arguments

u type ((X,B)pair= (I)G'B
m(a,b)-->Ax.xab
=(_,_)—->rabx.xab

11/16/23 65

;‘ Functions over Union Types

= Write a “match” function

n matCh e W|th CI yl le -> fl yl le
| .

| Cn Y1 - Ymn =2 f:n Y1 Ymn

» matcht —» A1 f; .. fe. ef,. f,

= Think: give me a function for each case and
give me a case, and I’ Il apply that case to
the appropriate fucntion with the data in
that case

11/16/23 66

‘ Functions over Pairs

= matchp, A fp.pf

= fst p = match p with (x,y) -> x
= fst —> A p. matchyy, (A X Y. X)
=L fp.pf)(AXY.X)=Ap.p(AXxY.X)

msnd >Ap.p(Axy.y)

11/16/23 67

i How to Represent (Free) Data Structures
(Third Pass - Recursive Types)

= Suppose t is a type with 1 constructors:
type T = C}t]] t.l/(l |Cn tn1 tnm,

= Suppose ¢;: t (ie. is recursive)

= In place of a value £, have a function to compute
the recursive value rj X ... X,

[C;t,l /',ht,jﬁ 7LX1 e Xp e X t;'] (/',hxl Xn) t,]

[C;ﬁ A t/l rlhtlj X1 oo X o X t;'] (/',hxl Xn) tl],

11/16/23 68

;‘ How to Represent Natural Numbers

=nNat =Sucnat |0
aSuc = nfx f(nfx)
sSucn=xAfx.f(nfx)
20 =2fX X

= Such representation called
Church Numerals

11/16/23 69

‘ Some Church Numerals

s Suc0=MAnfx.f(nfx)) (A fx. x)->
AMEx fF((Afx x)fx)-->
AMEx f((Ax.x)x)—->Arfx fx

Apply a function to its argument once

11/16/23 70

‘ Some Church Numerals

= Suc(Suc 0) = (A nfx. f(nfx)) (Suc0)-->
(Anfx.f(nfx) (A fx. fx)->
rEx f((Afx fx)fx))->
AMEx f((Ax. fx)x))-—->Arfx f(fx)
Apply a function twice

In general n = A fx. f (... (Fx)...) with n
applications of f

11/16/23 71

Primitive Recursive Functions

= Write a “fold” function
= fold f; ... f, = match e
with CI Y1 Ym1 => f:1 Y1 Ymi

[...
| Giyy ... by yin => fryg . (fold £y frg) Y
[...
| GJ Y1 Ymn => f:n Yi - Ymn

w foldr — Mfy .. fie.ef..f,

= Match in non recursive case a degenerate version
of fold

11/16/23 72

i Primitive Recursion over Nat

s fold fzn=
= match n with 0 -> z
. | Suc m -> f (fold f z m)

sfold=Afzn. nfz

= is_zero n = fold (A r. False) True n
= (A fx. fnx) (A r. False) True

= ((A r. False) ") True

= =if n = 0 then True else False

11/16/23 73

:-‘ Adding Church Numerals

=Afx.f"x and m=Afx. fmx

- |

snN+m=xfx fOmx
=Afx.fn(fmx)=Aafx.nf(mfx)

st=anmfx.nf(mfx)

= Subtraction is harder

11/16/23 74

i Multiplying Church Numerals

an=AFfx.f7x and m=Afx. fmx

Afx. (Fremx =24 fx (Fmnx
n(m

11/16/23 75

‘ Predecessor

= let pred_aux n =

match n with 0 -> (0,0)

| Suc m
-> (Suc(fst(pred_aux m)), fst(pred_aux m)
= fold (A r. (Suc(fstr), fst r)) (0,0) n

= pred =i n.snd (pred_auxn) n =
A n. snd (fold (A r.(Suc(fstr), fst r)) (0,0) n)

11/16/23 76

i Recursion

= Want a A-term Y such that for all term
R we have

= YR=R(YR)
= Y needs to have replication to
“remember” a copy of R

s Y =2y, (A X y(X X)) (A X y(xXx))
= YR = (A x. R(X X)) (A x. R(x X))

= R ((A x. R(x X)) (A x. R(x x)))
= Notice: Requires lazy evaluation

11/16/23 77

i Factorial

s letF=Afn ifn=0thenlelsen*f(n-1)
YF3=F(YF)3

=if3=0thenlelse3* ((YF)(3-1))
=3*(YF)2=3*(FYF)2)
=3*(f2=0thenlelse2 * (YF)(2-1))
=3*Q*(YPA)=3*2*(FYF) 1)) =..
=3*2*1*(if 0 = 0then 1 else 0*(Y F)(0 -1))
=3*2*%1*1=6

11/16/23 78

‘ Y in OCaml

#letrecyf=~f(yf);;
valy: (‘a->"a) -> 'a = <fun>
let mk_fact =
funfn->if n=0then 1else n * f(n-1);;
val mk_fact : (int -> int) -> int -> int = <fun>
y mk_fact;;
Stack overflow during evaluation (looping
recursion?).

11/16/23 79

i Eager Eval Y in Ocaml

#letrecyfx="f(yf)x;;

valy: ((la->'b)->'a->'b)->'a->'b
= <fun>

y mk_fact;;

- :int -> int = <fun>

y mk_fact 5;;

-:1int =120

= Use recursion to get recursion

11/16/23 80

i Some Other Combinators

= For your general exposure

sl =AX.X

s K=AX.AY.X

s K« =AX.AY. Y

s S=AX.AYy.AZ.x2(Yy2)

11/16/23 81

*

End of Extra Material

11/16/23

82

