Programming Languages and Compilers (CS 421)

2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

Three Main Topics of the Course

III: Language Semantics

- Expresses the meaning of syntax
- Static semantics
 - Meaning based only on the form of the expression without executing it
 - Usually restricted to type checking / type inference

Dynamic semantics

- Method of describing meaning of executing a program
- Several different types:
 - Operational Semantics
 - Axiomatic Semantics
 - Denotational Semantics

Dynamic Semantics

- Different languages better suited to different types of semantics
- Different types of semantics serve different purposes

Operational Semantics

- Start with a simple notion of machine
- Describe how to execute (implement)
 programs of language on virtual machine, by
 describing how to execute each program
 statement (ie, following the structure of the
 program)
- Meaning of program is how its execution changes the state of the machine
- Useful as basis for implementations

Axiomatic Semantics

- Also called Floyd-Hoare Logic
- Based on formal logic (first order predicate calculus)
- Axiomatic Semantics is a logical system built from axioms and inference rules
- Mainly suited to simple imperative programming languages

Axiomatic Semantics

- Used to formally prove a property (post-condition) of the state (the values of the program variables) after the execution of program, assuming another property (pre-condition) of the state before execution
- Written:
 {Precondition} Program {Postcondition}
- Source of idea of loop invariant

Denotational Semantics

- Construct a function M assigning a mathematical meaning to each program construct
- Lambda calculus often used as the range of the meaning function
- Meaning function is compositional: meaning of construct built from meaning of parts
- Useful for proving properties of programs

Natural Semantics

- Aka Structural Operational Semantics, aka "Big Step Semantics"
- Provide value for a program by rules and derivations, similar to type derivations
- Rule conclusions look like

Simple Imperative Programming Language

- *I* ∈ *Identifiers*
- Arr $N \in Numerals$
- B::= true | false | B & B | B or B | not B
 | E < E | E = E
- E::= N / I / E + E / E * E / E E / E / (E)
- C::= skip | C; C | I := E
 | if B then C else C fi | while B do C od

Natural Semantics of Atomic Expressions

- Identifiers: $(I,m) \lor m(I)$
- Numerals are values: (N,m) ↓ N
- Booleans: $(true, m) \downarrow true$ $(false, m) \downarrow false$

$$(B, m)$$
 ↓ false $(B \& B', m)$ ↓ false

$$(B, m)$$
 ↓ true
 $(B \text{ or } B', m)$ ↓ true

$$\frac{(B, m) \Downarrow \text{ false } (B', m) \Downarrow b}{(B \text{ or } B', m) \Downarrow b}$$

$$(B, m)$$
 ↓ true
(not B, m) ↓ false

$$(B, m)$$
 \Downarrow false (not B, m) \Downarrow true

Relations

$$(E, m) \downarrow U \quad (E', m) \downarrow V \quad U \sim V = b$$

$$(E \sim E', m) \downarrow b$$

- By U ~ V = b, we mean does (the meaning of) the relation ~ hold on the meaning of U and V
- May be specified by a mathematical expression/equation or rules matching U and

Arithmetic Expressions

$$(\underline{E, m}) \Downarrow U \quad (\underline{E', m}) \Downarrow V \quad U \text{ op } V = N$$

$$(\underline{E \text{ op } E', m}) \Downarrow N$$
where N is the specified value for $U \text{ op } V$

Commands

Skip:

(skip, m) $\downarrow m$

Assignment: $(E,m) \downarrow V$ $(I:=E,m) \downarrow m[I <-- V] (=\{I -> V\}+m)$

Sequencing: $(C,m) \downarrow m'$ $(C',m') \downarrow m''$ $(C;C',m) \downarrow m''$

If Then Else Command

(B,m) ↓ true (C,m) ↓ m'(if B then C else C' fi, m) ↓ m'

4

While Command

$$(B,m) \downarrow \text{false}$$

(while $B \text{ do } C \text{ od}, m) \downarrow m$

$$(B,m)$$
 ↓ true (C,m) ↓ m' (while B do C od, m') ↓ m' ′ (while B do C od, m) ↓ m' ′

4

Example: If Then Else Rule

(if x > 5 then y:= 2 + 3 else y:= 3 + 4 fi,
$$\{x -> 7\}$$
) \downarrow ?

4

Example: If Then Else Rule

Example: Arith Relation

```
? > ? = ?

\frac{(x,(x->7)) \lor ?}{(x > 5, (x -> 7)) \lor ?}
\frac{(x > 5, (x -> 7)) \lor ?}{(if x > 5 then y:= 2 + 3 else y:= 3 + 4 fi, (x -> 7)) \lor ?}
```

Example: Identifier(s)

7 > 5 = true

$$(x,(x->7))$$
 \(\frac{1}{2}\) \

Example: Arith Relation

7 > 5 = true

$$(x,(x->7))$$
 \(\frac{5}{x} - > 7\) \(\frac{5}{5}\) \(\text{true}\) \(\text{if } x > 5, \{x -> 7\}\) \(\frac{1}{5}\) \(\text{true}\) \(\text{if } x > 5 \) then \(y := 2 + 3 \) else \(y := 3 + 4 \) fi, \(\{x -> 7\}\) \(\frac{1}{2}\) \(

Example: If Then Else Rule

Example: Assignment

Example: Arith Op

Example: Numerals

$$2 + 3 = 5$$

$$(2,\{x->7\}) \downarrow 2 \quad (3,\{x->7\}) \downarrow 3$$

$$7 > 5 = \text{true} \qquad (2+3,\{x->7\}) \downarrow ?$$

$$(x,\{x->7\}) \downarrow 7 \quad (5,\{x->7\}) \downarrow 5 \qquad (y:= 2+3,\{x->7\})$$

$$(x > 5, \{x -> 7\}) \downarrow \text{true} \qquad \downarrow ?$$

$$(if x > 5 \text{ then } y:= 2+3 \text{ else } y:=3+4 \text{ fi,}$$

$$\{x -> 7\}) \downarrow ?$$

Example: Arith Op

$$2 + 3 = 5$$

$$(2,\{x->7\}) \lor 2 \quad (3,\{x->7\}) \lor 3$$

$$7 > 5 = \text{true} \qquad (2+3,\{x->7\}) \lor 5$$

$$(x,\{x->7\}) \lor 7 \quad (5,\{x->7\}) \lor 5 \quad (y:=2+3,\{x->7\})$$

$$(x > 5, \{x -> 7\}) \lor \text{true} \qquad \qquad \lor ?$$

$$(if x > 5 \text{ then } y:=2+3 \text{ else } y:=3+4 \text{ fi,}$$

$$\{x -> 7\}\} \lor ?$$

Example: Assignment

$$2 + 3 = 5$$

$$(2,\{x->7\}) \downarrow 2 \quad (3,\{x->7\}) \downarrow 3$$

$$7 > 5 = \text{true} \qquad (2+3,\{x->7\}) \downarrow 5$$

$$(x,\{x->7\}) \downarrow 7 \quad (5,\{x->7\}) \downarrow 5 \qquad (y:= 2+3,\{x->7\})$$

$$(x > 5, \{x -> 7\}) \downarrow \text{true} \qquad \downarrow \{x->7, y->5\}$$

$$(if x > 5 \text{ then } y:= 2+3 \text{ else } y:=3+4 \text{ fi,}$$

$$\{x -> 7\}) \downarrow ?$$

Example: If Then Else Rule

```
2 + 3 = 5

(2,\{x->7\}) \downarrow 2 \quad (3,\{x->7\}) \downarrow 3

7 > 5 = \text{true} \qquad (2+3,\{x->7\}) \downarrow 5

(x,\{x->7\}) \downarrow 7 \quad (5,\{x->7\}) \downarrow 5 \qquad (y:= 2+3,\{x->7\})

(x > 5, \{x -> 7\}) \downarrow \text{true} \qquad \downarrow \{x->7, y->5\}

(if x > 5 \text{ then } y:= 2+3 \text{ else } y:= 3+4 \text{ fi,}

\{x -> 7\}) \downarrow \{x->7, y->5\}
```

Comment

- Simple Imperative Programming Language introduces variables implicitly through assignment
- The let-in command introduces scoped variables explictly
- Clash of constructs apparent in awkward semantics

Interpretation Versus Compilation

- A compiler from language L1 to language L2 is a program that takes an L1 program and for each piece of code in L1 generates a piece of code in L2 of same meaning
- An interpreter of L1 in L2 is an L2 program that executes the meaning of a given L1 program
- Compiler would examine the body of a loop once; an interpreter would examine it every time the loop was executed

Interpreter

- An *Interpreter* represents the operational semantics of a language L1 (source language) in the language of implementation L2 (target language)
- Built incrementally
 - Start with literals
 - Variables
 - Primitive operations
 - Evaluation of expressions
 - Evaluation of commands/declarations

Interpreter

- Takes abstract syntax trees as input
 - In simple cases could be just strings
- One procedure for each syntactic category (nonterminal)
 - eg one for expressions, another for commands
- If Natural semantics used, tells how to compute final value from code
- If Transition semantics used, tells how to compute next "state"
 - To get final value, put in a loop

Natural Semantics Example

- compute_exp (Var(v), m) = look_up v m
- compute_exp (Int(n), _) = Num (n)
- ...
- compute_com(IfExp(b,c1,c2),m) =
 if compute_exp (b,m) = Bool(true)
 then compute_com (c1,m)
 else compute_com (c2,m)

Natural Semantics Example

- compute_com(While(b,c), m) =
 if compute_exp (b,m) = Bool(false)
 then m
 else compute_com
 (While(b,c), compute_com(c,m))
- May fail to terminate exceed stack limits
- Returns no useful information then

4

Transition Semantics

- Form of operational semantics
- Describes how each program construct transforms machine state by transitions
- Rules look like

$$(C, m) \longrightarrow (C', m')$$
 or $(C, m) \longrightarrow m'$

- C, C' is code remaining to be executed
- m, m' represent the state/store/memory/environment
 - Partial mapping from identifiers to values
 - Sometimes m (or C) not needed
- Indicates exactly one step of computation

Expressions and Values

- C, C' used for commands; E, E' for expressions; U, V for values
- Special class of expressions designated as values
 - Eg 2, 3 are values, but 2+3 is only an expression
- Memory only holds values
 - Other possibilities exist

Evaluation Semantics

- Transitions successfully stops when E/C is a value/memory
- Evaluation fails if no transition possible, but not at value/memory
- Value/memory is the final meaning of original expression/command (in the given state)
- Coarse semantics: final value / memory
- More fine grained: whole transition sequence

11/7/23

Simple Imperative Programming Language

- $I \in Identifiers$
- Arr $N \in Numerals$
- B::= true | false | B & B | B or B | not B | E
 < E | E = E
- E::= N / I / E + E / E * E / E E / E
- C::= skip | C; C | I ::= E
 | if B then C else C fi | while B do C od

Transitions for Expressions

Numerals are values

Boolean values = {true, false}

■ Identifiers: (*I,m*) --> (*m*(*I*), *m*)

Boolean Operations:

Operators: (short-circuit)

```
(false & B, m) --> (false,m) (B, m) --> (B'', m) (true & B, m) --> (B,m) (B \otimes B', m) --> (B'' \otimes B', m) (true or B, m) --> (true,m) (B, m) --> (B'', m) (false or B, m) --> (B,m) (B or B', m) --> (B'' or B', m) (not true, B) --> (true,B) (B, m) --> (B'', B') (not false, B) --> (true,B) (B, m) --> (not B', B')
```

Relations

$$\frac{(E, m) --> (E'', m)}{(E \sim E', m) --> (E'' \sim E', m)}$$

$$\frac{(E, m) --> (E', m)}{(V \sim E, m) --> (V \sim E', m)}$$

 $(U \sim V, m) \longrightarrow (\text{true}, m) \text{ or } (\text{false}, m)$ depending on whether $U \sim V \text{ holds or not}$

Arithmetic Expressions

$$(E, m) \longrightarrow (E'', m)$$

 $(E \text{ op } E', m) \longrightarrow (E'' \text{ op } E', m)$

$$\frac{(E, m) --> (E', m)}{(V \text{ op } E, m) --> (V \text{ op } E', m)}$$

(*U op V, m*) --> (*N,m*) where *N* is the specified value for *U op V*

Commands - in English

- skip means done evaluating
- When evaluating an assignment, evaluate the expression first
- If the expression being assigned is already a value, update the memory with the new value for the identifier
- When evaluating a sequence, work on the first command in the sequence first
- If the first command evaluates to a new memory (ie completes), evaluate remainder with new memory

Commands

$$(skip, m) \longrightarrow m$$

$$(E,m) \longrightarrow (E',m)$$

$$(I::=E,m) \longrightarrow (I::=E',m)$$

$$(I::=V,m) \longrightarrow m[I \longleftarrow V]$$

$$(C,m) \longrightarrow (C'',m') \qquad (C,m) \longrightarrow m'$$

$$(C,C',m) \longrightarrow (C'',C',m') \qquad (C,C',m) \longrightarrow (C',m')$$

If Then Else Command - in English

- If the boolean guard in an if_then_else is true, then evaluate the first branch
- If it is false, evaluate the second branch
- If the boolean guard is not a value, then start by evaluating it first.

11/7/23

If Then Else Command

(if true then Celse C' fi, m) --> (C, m)

(if false then C else C' fi, m) --> (C', m)

What should while transition to?

(while B do C od, m) \rightarrow ?

Wrong! BAD

$$(B, m) \rightarrow (B', m)$$

(while B do C od, m) \rightarrow (while B' do C od, m)

11/7/23

While Command

(while B do C od, m) --> (if B then C; while B do C od else skip fi, m)

In English: Expand a While into a test of the boolean guard, with the true case being to do the body and then try the while loop again, and the false case being to stop.


```
(if x > 5 then y := 2 + 3 else y := 3 + 4 fi, \{x -> 7\})

--> ?
```


$$(x > 5, \{x -> 7\}) --> ?$$

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, $\{x -> 7\}$)
--> ?

$$(x,\{x \to 7\}) \to (7, \{x \to 7\})$$

$$(x > 5, \{x \to 7\}) \to ?$$
(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi,
$$\{x \to 7\}$$
)
$$--> ?$$

$$(x,\{x \to 7\}) \to (7, \{x \to 7\})$$

 $(x > 5, \{x \to 7\}) \to (7 > 5, \{x \to 7\})$
(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, $\{x \to 7\}$)
 $-->$?

$$(x,\{x -> 7\}) --> (7, \{x -> 7\})$$

$$(x > 5, \{x -> 7\}) --> (7 > 5, \{x -> 7\})$$

$$(if x > 5 \text{ then } y := 2 + 3 \text{ else } y := 3 + 4 \text{ fi,}$$

$$\{x -> 7\})$$
--> (if 7 > 5 then $y := 2 + 3 \text{ else } y := 3 + 4 \text{ fi,}$

$$\{x -> 7\})$$

Second Step:

$$(7 > 5, \{x -> 7\})$$
 --> (true, $\{x -> 7\}$)
(if $7 > 5$ then $y:=2 + 3$ else $y:=3 + 4$ fi, $\{x -> 7\}$)
--> (if true then $y:=2 + 3$ else $y:=3 + 4$ fi, $\{x -> 7\}$)

Third Step:

(if true then
$$y:=2 + 3$$
 else $y:=3 + 4$ fi, $\{x -> 7\}$)
--> $\{y:=2+3, \{x->7\}\}$)

Fourth Step:

$$\frac{(2+3, \{x->7\}) --> (5, \{x->7\})}{(y:=2+3, \{x->7\}) --> (y:=5, \{x->7\})}$$

Fifth Step:

$$(y:=5, \{x->7\}) \longrightarrow \{y->5, x->7\}$$

Bottom Line:

```
(if x > 5 then y := 2 + 3 else y := 3 + 4 fi,
 \{x -> 7\}
--> (if 7 > 5 then y:=2 + 3 else y:=3 + 4 fi,
 \{x -> 7\}
--> (if true then y:=2 + 3 else y:=3 + 4 fi,
 \{x -> 7\}
 -->(y:=2+3, \{x->7\})
--> (y:=5, \{x->7\}) --> \{y->5, x->7\}
```


Transition Semantics Evaluation

 A sequence of steps with trees of justification for each step

$$(C_1, m_1) \longrightarrow (C_2, m_2) \longrightarrow (C_3, m_3) \longrightarrow m$$

- Let -->* be the transitive closure of -->
- Ie, the smallest transitive relation containing -->

Programming Languages & Compilers

III: Language Semantics

Lambda Calculus - Motivation

 Aim is to capture the essence of functions, function applications, and evaluation

 \bullet λ —calculus is a theory of computation

"The Lambda Calculus: Its Syntax and Semantics". H. P. Barendregt. North Holland, 1984

Lambda Calculus - Motivation

- All sequential programs may be viewed as functions from input (initial state and input values) to output (resulting state and output values).
- λ-calculus is a mathematical formalism of functions and functional computations
- Two flavors: typed and untyped

Untyped λ-Calculus

- Only three kinds of expressions:
 - Variables: x, y, z, w, ...
 - Abstraction: λ x. e (Function creation, think fun x -> e)
 - Application: e₁ e₂
 - Parenthesized expression: (e)

Untyped λ-Calculus Grammar

Formal BNF Grammar:

```
<expression> ::= <variable>
                       <abstraction>
                      <application>
                      (<expression>)
<abstraction>
              := \lambda < \text{variable} > \cdot < \text{expression} > \cdot
<application>
              ::= <expression> <expression>
```

Unty

Untyped λ-Calculus Terminology

- Occurrence: a location of a subterm in a term
- Variable binding: λ x. e is a binding of x in e
- **Bound occurrence:** all occurrences of x in λ x. e
- Free occurrence: one that is not bound
- Scope of binding: in λ x. e, all occurrences in e not in a subterm of the form λ x. e' (same x)
- Free variables: all variables having free occurrences in a term

Example

Label occurrences and scope:

$$(\lambda x. y \lambda y. y (\lambda x. x y) x) x$$

1 2 3 4 5 6 7 8 9

Example

Label occurrences and scope:

(λ x. y λ y. y (λ x. x y) x) x 1 2 3 4 5 6 7 8 9

11/7/23

4

Untyped λ-Calculus

- How do you compute with the λ-calculus?
- Roughly speaking, by substitution:

• $(\lambda x. e_1) e_2 \Rightarrow * e_1 [e_2/x]$

 * Modulo all kinds of subtleties to avoid free variable capture

Transition Semantics for λ -Calculus

Application (version 1 - Lazy Evaluation)

$$(\lambda \ X . E) E' --> E[E'/X]$$

Application (version 2 - Eager Evaluation)

$$E' \longrightarrow E''$$

$$(\lambda X. E) E' \longrightarrow (\lambda X. E) E''$$

$$(\lambda X.E) V --> E[V/x]$$

V - variable or abstraction (value)

How Powerful is the Untyped λ -Calculus?

- The untyped λ-calculus is Turing Complete
 - Can express any sequential computation
- Problems:
 - How to express basic data: booleans, integers, etc?
 - How to express recursion?
 - Constants, if_then_else, etc, are conveniences; can be added as syntactic sugar

Typed vs Untyped λ -Calculus

- The pure λ-calculus has no notion of type: (f f) is a legal expression
- Types restrict which applications are valid
- Types are not syntactic sugar! They disallow some terms
- Simply typed λ-calculus is less powerful than the untyped λ-Calculus: NOT Turing Complete (no recursion)

α Conversion

- α -conversion:
 - 2. λ x. exp $--\alpha-->\lambda$ y. (exp [y/x])
- 3. Provided that
 - 1. y is not free in exp
 - No free occurrence of x in exp becomes bound in exp when replaced by y

$$\lambda \times (\lambda y \times y) - \times -> \lambda y \times (\lambda y \times y)$$

α Conversion Non-Examples

1. Error: y is not free in term second

$$\lambda$$
 x. x y \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow y. y y

2. Error: free occurrence of x becomes bound in wrong way when replaced by y

$$\lambda x. \lambda y. x y \longrightarrow \lambda y. \lambda y. y y$$

$$exp \qquad exp[y/x]$$

But
$$\lambda$$
 x. (λ y. y) x -- α --> λ y. (λ y. y) y

And
$$\lambda$$
 y. (λ y. y) y -- α --> λ x. (λ y. y) x

C

Congruence

- Let ~ be a relation on lambda terms. ~ is a congruence if
- it is an equivalence relation
- If $e_1 \sim e_2$ then
 - (e e_1) ~ (e e_2) and (e_1e) ~ (e_2e)
 - λ x. $e_1 \sim \lambda$ x. e_2

α Equivalence

• α equivalence is the smallest congruence containing α conversion

• One usually treats α -equivalent terms as equal - i.e. use α equivalence classes of terms

11/7/23

Example

Show: $\lambda x. (\lambda y. y x) x \sim \alpha \sim \lambda y. (\lambda x. x y) y$

- λ x. $(\lambda$ y. y x) x $-\alpha$ --> λ z. $(\lambda$ y. y z) z so λ x. $(\lambda$ y. y x) x $\sim \alpha \sim \lambda$ z. $(\lambda$ y. y z) z
- $(\lambda y. yz) --\alpha --> (\lambda x. xz)$ so $(\lambda y. yz) \sim \alpha \sim (\lambda x. xz)$ so $(\lambda y. yz) z \sim \alpha \sim (\lambda x. xz) z$ so $\lambda z. (\lambda y. yz) z \sim \alpha \sim \lambda z. (\lambda x. xz) z$
- λ z. $(\lambda$ x. x z) z $-\alpha$ --> λ y. $(\lambda$ x. x y) y so λ z. $(\lambda$ x. x z) z $\sim \alpha \sim \lambda$ y. $(\lambda$ x. x y) y
- λ x. $(\lambda$ y. y x) x $\sim \alpha \sim \lambda$ y. $(\lambda$ x. x y) y