Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

11/7/23

http://courses.engr.illinois.edu/cs421

i Programming Languages & Compilers

Three Main Topics of the Course

New
Programming
Paradigm

Language
Translation

Language
Semantics

11/7/23 2

i Programming Languages & Compilers

Order of Evaluation

Language L
MINg T —Hansiabon— | Semantics

U

Specification to Implementation

11/7/23 3

i Programming Languages & Compilers

lll : Language Semantics

Lambda
Calculus

Axiomatic
Semantics

Operational

Semantics

11/7/23 4

i Programming Languages & Compilers

Order of Evaluation

Specification to Implementation

11/7/23 5

i Semantics

= Expresses the meaning of syntax

s Static semantics

=« Meaning based only on the form of the
expression without executing it

= Usually restricted to type checking / type
inference

11/7/23

i Dynamic semantics

= Method of describing meaning of
executing a program
= Several different types:
= Operational Semantics
= AXiomatic Semantics
= Denotational Semantics

11/7/23

i Dynamic Semantics

= Different languages better suited
to different types of semantics

= Different types of semantics
serve different purposes

11/7/23 8

i Operational Semantics

= Start with a simple notion of machine

= Describe how to execute (implement)
programs of language on virtual machine, by
describing how to execute each program
statement (ie, following the structure of the
program)

= Meaning of program is how its execution
changes the state of the machine

= Useful as basis for implementations

11/7/23 9

i Axiomatic Semantics

= Also called Floyd-Hoare Logic

= Based on formal logic (first order
predicate calculus)

= Axiomatic Semantics is a logical system
built from axioms and /nference rules

= Mainly suited to simple imperative
programming languages

11/7/23 10

i Axiomatic Semantics

= Used to formally prove a property
(post-condiition) of the state (the
values of the program variables) after
the execution of program, assumin
another property (pre-condition) of the
state before execution

= Written :
{Precondition} Program {Postcondition}
= Source of idea of /loop invariant

11/7/23 11

i Denotational Semantics

= Construct a function % assigning a
mathematical meaning to each program
construct

= Lambda calculus often used as the range
of the meaning function

= Meaning function is compositional:
meaning of construct built from meaning
of parts

= Useful for proving properties of programs

11/7/23 12

i Natural Semantics

= Aka Structural Operational Semantics, aka
“Big Step Semantics”

= Provide value for a program by rules and
derivations, similar to type derivations

= Rule conclusions look like
(C,mim’
or
(E, m) Uv

11/7/23

14

i Simple Imperative Programming Language

n [e Identifiers
s N e Numerals

m B:i=true |false | B& B| Bor B| not B
| E<E| E=E

s E=N/IT/E+EJEXE/E-E]/-E/(E)
m Ci=skip| CGC| IT:=E
| if Bthen Celse Cfi | while Bdo Cod

11/7/23 15

i Natural Semantics of Atomic Expressions

= Identifiers: (Zm) U m(1)

= Numerals are values: (N,m) U N

= Booleans: (true,m) U true
(false ,m) U false

11/7/23 16

i Booleans:

(B, m) | false (B, m) true (B, m)U b

(B& B’, m) | false (B& B, m) b
(B, m) true (B, m) U false (8", m)U b
(Bor B’, m){ true (Bor B, m){ b
(B, m) U true (B, m) false

(not B, m) U false (not B, m) U true

11/7/23 17

i Relations

EmiU (E,miV U~V=0b
(E~E, mlip

s By U~ V = bH, we mean does (the meaning
of) the relation ~ hold on the meaning of U
and V

= May be specified by a mathematical

expression/equation or rules matching ¢/ and
4

11/7/23 18

i Arithmetic Expressions

(EmIU (E,miV UopV=N
(EopE, m)U N
where Nis the specified value for U op V

11/7/23

19

i Commands

Skip: (skip, m) U m

Assignment: (Em)U Vv
(F=Em) U m[IT <-- V] (={I->V}+m)

Sequencing: (CmUm’ (C',mYUm’’
(cCc’,myim”’

11/7/23 21

i If Then Else Command

(B.m) U true (Cm U m’

(if Bthen Celse C’ fi, m) U m’

(B.m) U false (C’,m U m’

(if Bthen Celse C’ fi, m) U m’

11/7/23

22

i While Command

(B.m) U false
(while Bdo Cod, m) ¥ m

(B m)ltrue (CmUm’ (while Bdo Cod, m’ YUm’”’

(while Bdo Cod, m) U m’”’

11/7/23 23

i Example: If Then Else Rule

(if x > 5theny:=2 + 3 elsey:=3 + 4 fi,
{x->7) U7

11/7/23

24

i Example: If Then Else Rule

(x > 5, {x -> 7H)l?

(if x > 5theny:=2 + 3 elsey:=3 + 4 fi,
{x->7H{ ?

11/7/23

25

i Example: Arith Relation

2> ?7=7

(x{x->7)U? (5 {x->7})?
(x > 5, {x -> 7})?

(if x > 5theny:=2 + 3 elsey:=3 + 4 fi,
{x->7) {7

11/7/23

26

i Example: Identifier(s)

/ > 5 = true
(X {x->7NVU7 (5 {x->7)5
(x > 5, {x -> 7})?

(if x > 5theny:=2 + 3 elsey:=3 + 4 fi,
{x->7) {7

11/7/23

27

i Example: Arith Relation

/ > 5 =true
(X, {x->7)W7 (5,{x->7})U5
(x > 5, {x -> 7V)true

(if x >5theny:=2 + 3 else y:=3 + 41,
x->7%) 2

11/7/23

28

i Example: If Then Else Rule

/ > 5 = true
(X {x->7NVU7 (5 {x->7)5 (y:i=2 + 3, {x-> 7}
(x > 5, {x -> 7H)true U?

(if x > 5theny:=2 + 3 elsey:=3 + 4 fi,
{x->71) U7

11/7/23 29

i Example: Assignment

7 > 5 = true (243, {x->7}1)U?
(X {x->7NVU7 (5 {x->7)5 (y:i=2 + 3, {x-> 7}
(x > 5, {x -> 7V)ltrue U?

(if x > 5theny:=2 + 3 elsey:=3 + 4 fi,
{x->7) {7

11/7/23 30

i Example: Arith Op

24+ ?2="7
(2 {x->7)U? B{x->7}) U?
7 > 5 = true (243, {x->7}1)U?
(X Ax->7WW7 (5 {x->7VWU5 (y:=2+ 3, {x-> 7}

(x > 5, {x -> 7V)true U?
(if x > 5theny:=2 + 3 elsey:=3 + 4 fi,
{x->7) {7

11/7/23 31

i Example: Numerals

2+3=05
(2 {x->7)U2 (3B {x->7}) i3
7 > 5 = true (243, {x->7}1)U?
(X Ax->7WW7 (5 {x->7WU5 (y:=2+ 3, {x-> 7}
(x > 5, {x -> 7V)ltrue U?

(if x > 5theny:=2 + 3 elsey:=3 + 4 fi,
{x->71) U7

11/7/23 32

i Example: Arith Op

2+3=05
(2 {x->7)U2 (3B {x->7}) i3
7 > 5 = true (243, {x->7})U5
(X Ax->7WW7 (5 {x->7WU5 (y:=2+ 3, {x-> 7}
(x > 5, {x -> 7V)ltrue U?

(if x > 5theny:=2 + 3 elsey:=3 + 4 fi,
{x->7) 1 ?

11/7/23 33

i Example: Assignment

2+3=05
(2 {x->7)U2 (3B {x->7}) i3
7 > 5 = true (243, {x->7})U5
(X Ax->7WW7 (5 {x->7WU5 (y:=2+ 3, {x-> 7}
(x > 5, {x -> 7})ltrue U {x->7, y->5}

(if x > 5theny:=2 + 3 elsey:=3 + 4 fi,
{x->73) U7

11/7/23 34

i Example: If Then Else Rule

2+3=05
(2 {x->7)U2 (3B {x->7}) i3
7 > 5 = true (243, {x->7})U5
(X Ax->7WW7 (5 {x->7WU5 (y:=2+ 3, {x-> 7}
(x > 5, {x -> 7V)true U {x->7, y->5}

(if x > 5theny:=2 + 3 elsey:=3 + 4 fi,
{x->7){ {x->7, y->5}

11/7/23 35

i Comment

= Simple Imperative Programming Language
introduces variables /implicit/y through
assignment

= The let-in command introduces scoped
variables explictly

= Clash of constructs apparent in awkward
semantics

11/7/23

39

i Interpretation Versus Compilation

= A compiler from language L1 to language
L2 is a program that takes an L1 program
and for each piece of code in L1 generates a
piece of code in L2 of same meaning

= An interpreter of L1 in L2 is an L2 program
that executes the meaning of a given L1
program

= Compiler would examine the body of a loop
once; an interpreter would examine it every
time the loop was executed

11/7/23 40

i Interpreter

= An Interpreter represents the operational
semantics of a language L1 (source
language) in the language of implementation
L2 (target language)

= Built incrementally
« Start with literals
= Variables
= Primitive operations
« Evaluation of expressions
» Evaluation of commands/declarations

11/7/23 41

i Interpreter

= Takes abstract syntax trees as input
= In simple cases could be just strings

= One procedure for each syntactic category
(nonterminal)

= eg one for expressions, another for commands

= If Natural semantics used, tells how to
compute final value from code

= If Transition semantics used, tells how to
compute next “state”

= 10 get final value, put in a loop

11/7/23 43

i Natural Semantics Example

= compute_exp (Var(v), m) = look_up vm
= compute_exp (Int(n),) = Num (n)
= compute_com(IfExp(b,c1,c2),m) =
if compute_exp (b,m) = Bool(true)
then compute_com (c1,m)
else compute_com (c2,m)

11/7/23

44

i Natural Semantics Example

= compute_com(While(b,c), m) =
if compute_exp (b,m) = Bool(false)
then m
else compute_com
(While(b,c), compute_com(c,m))

= May fail to terminate - exceed stack limits
= Returns no useful information then

11/7/23

45

i Transition Semantics

Form of operational semantics

Describes how each program construct transforms
machine state by fransitions

Rules look like
(C,m)y-->(C,m) or (Cm)->m
C, C’ is code remaining to be executed

m, m’ represent the
state/store/memory/environment

» Partial mapping from identifiers to values
= Sometimes m (or) not needed
Indicates exactly one step of computation

11/7/23 46

i Expressions and Values

s C C’ used for commands; £ E’ for
expressions; U,V for values

= Special class of expressions designated as
values

« Eg 2, 3 are values, but 2+3 is only an
expression

= Memory only holds values
« Other possibilities exist

11/7/23 47

i Evaluation Semantics

= Transitions successfully stops when E/Cis a
value/memory

= Evaluation fails if no transition possible, but
not at value/memory

= Value/memory is the final meaning of
original expression/command (in the given
state)

= Coarse semantics: final value / memory
= More fine grained: whole transition sequence

11/7/23 48

i Simple Imperative Programming Language

n [e Identifiers
s N e Numerals

m Bii=true | false | B& B| Bor Bl not B | £
<E|E=E

s EE=N/IT/E+E/EXE/E-E/-F
mCii=skip| GC| IT::=E
| if Bthen Celse Cfi | while Bdo Cod

11/7/23 50

i Transitions for Expressions

= Numerals are values

= Boolean values = {true, false}

= Identifiers: (I,m) --> (nm(1), m)

11/7/23

51

i Boolean Operations:

= Operators: (short-circuit)
(false & B, m) --> (false,m) (B, m)--> (B, m)
(true & B m)--> (Bm) (B& B, m)-->(B"& B, m)

(true or B, m) --> (true,m) (B, m) --> (B”, m)
(false or B, m) --> (B.m) (Bor B, m)--> (B”or B ,m)

(not true, m) --> (false,m) (B, m)--> (B, m)
(not false, m) --> (true,m) (not B, m) --> (not B', m)

11/7/23 52

i Relations

(E, m)-->(E"",m)
(E~E’, m)--> (E' ~E,m)

(E, m) --> (E',m)
(V~E m)-->(V~E',m)

(U~ V, m) --> (true,m) or (false, m)
depending on whether U ~ IV'holds or not

11/7/23 53

i Arithmetic Expressions

(E, m) --> (E"",m)
(Eop E, m)--> (E" " op E',m)

(E, m)--> (E',m)
(Vop E, m)--> (Vop E',m)

(Uop V, m) -->(N,m) where Nis the
specmed value for Uop V

11/7/23

54

i Commands - in English

= Skip means done evaluating

= When evaluating an assignment, evaluate the
expression first

= If the expression being assigned is already a
value, update the memory with the new value for
the identifier

= When evaluating a sequence, work on the first
command in the sequence first

= If the first command evaluates to a new memory
(ie completes), evaluate remainder with new
memory

11/7/23 55

i Commands

(skip, m) --> m

(E,m) --> (E',m)
(L:=Em) --> (L:=E",m)

(L:=V,m) --> m[] <-- V]

(Gm) —-> (Cm") (&m) > m-
(&;C, m) > (C7;C,m) (GC, m)-->(C;m’)

11/7/23 56

i If Then Else Command - in English

= If the boolean guard in an if_then_else
iSs true, then evaluate the first branch

= If it is false, evaluate the second branch

= If the boolean guard is not a value,
then start by evaluating it first.

11/7/23 58

i If Then Else Command

(if true then Celse C’ fi, m) --> (C, m)
(if false then Celse C’ fi, m) --> (C’, m)
(Bm) --> (B,m)

(if Bthen Celse C’ fi, m)
--> (if B’ then Celse C’ fi, m)

11/7/23 59

i What should while transition to?

(while Bdo Cod, m) - ?

11/7/23 60

i Wrong! BAD

(B, m) > (B, m)

(while B do C od, m) -=> (while B’ do C od, m)

11/7/23 61

i While Command

(while Bdo Cod, m) -->
(if Bthen C while Bdo Cod else skip fi, m)

In English: Expand a While into a test of the boolean
guard, with the true case being to do the body
and then try the while loop again, and the false
case being to stop.

11/7/23 62

i Example Evaluation

= First step:

(if x >5theny:=2 + 3 elsey:=3 + 4fj,
{X->7})

--> ?

11/7/23

63

i Example Evaluation

= First step:

(X >5,{x->7})->"7?

(if x >5theny:=2 + 3 elsey:=3 + 4fj,
{X->7})

--> ?

11/7/23

64

i Example Evaluation

= First step:

(XI{X -> 7}) --> (71 {X -> 7})
(X >5,{x->7})->"7?

(if x >5theny:=2 + 3 elsey:=3 + 4fj,
{X->7})

--> ?

11/7/23

65

i Example Evaluation

= First step:

(XI{X -> 7}) --> (71 {X -> 7})
(X >5,{x->7})-->(7>5,{x->7})

(if x >5theny:=2 + 3 elsey:=3 + 4fj,
{X->7})

--> ?

11/7/23

66

i Example Evaluation

= First step:
(X,{X->7})-->(7,{x->7})
(X >5,{x->7})-->(7>5,{x->7})
(if x >5theny:=2 + 3 elsey:=3 + 4fj,
{X->7})
--> (if 7> 5theny:=2 + 3 elsey:=3 + 4 fi,
{X->7})

11/7/23 67

i Example Evaluation

= Second Step:
(7 >5, {x->7})--> (true, {x->7})
(if 7> 5theny:=2 + 3 else y:=3 + 4 fi,
{X->7})
--> (if true then y:=2 + 3 else y:=3 + 4 fi,
{X->7})

= Third Step:
(if true then y:=2 + 3 elsey:=3 + 4 fi, {x -> 7})
-->(y:=243, {X->7})

11/7/23 68

i Example Evaluation

= Fourth Step:
(243, {x-> 7}) --> (5, {x -> 7})

(y:=2+43, {x->7}) --> (y:=5, {x->7})

. Fifth Step:
(y:=5, {x->7}) -->{y->5,x->7}

11/7/23

69

i Example Evaluation

. Bottom Line:

(if x >5theny:=2 + 3 elsey:=3 + 4fj,
{X->7})

--> (if 7 > 5theny:=2 + 3 elsey:=3 + 4 fi,
{X->7})

-->(if true then y:=2 + 3 else y:=3 + 4 fi,
{X->7})
-->(y:=24+3, {X->7})

--> (y:=5, {x->7}) --> {y -> 5, x-> 7}

11/7/23 70

i Transition Semantics Evaluation

= A sequence of steps with trees of
justification for each step

U U Uy

(Cyymy) --> (C,my) --> (C5,m3) --> ... -->m

s Let -->* be the transitive closure of -->

= e, the smallest transitive relation
containing -->

11/7/23 /1

i Programming Languages & Compilers

lll : Language Semantics

Lambda
Calculus

Axiomatic
Semantics

Operational

Semantics

11/7/23 78

i Lambda Calculus - Motivation

= Aim is to capture the essence of
functions, function applications, and
evaluation

= A—calculus is a theory of computation

= ' The Lambda Calculus: Its Syntax and
Semantics”. H. P. Barendregt. North
Holland, 1984

11/7/23

79

i Lambda Calculus - Motivation

s All sequential programs may be viewed
as functions from input (initial state and
input values) to output (resulting state
and output values).

= A-Calculus is a mathematical formalism
of functions and functional
computations

= Two flavors: typed and untyped

11/7/23 80

i Untyped A-Calculus

= Only three kinds of
expressions:

«Variables: x, y, z, w, ...

=« Abstraction: A X. e
(Function creation, think fun x -> e)

« Application: e, e,

" Parenthesized expression: (e)

11/7/23

81

i Untyped A-Calculus Grammar

= Formal BNF Grammar:

= <expression> ::= <variable>
<abstraction>
<application>
(<expression>)

= <abstraction>

::= A<variable>.<expression>
= <application>
.= <expression> <expression>

11/7/23 82

i Untyped A-Calculus Terminology

s Occurrence: a location of a subterm in a
term

= Variable binding: A x. e is a binding of x in e

s Bound occurrence: all occurrences of x in
A X, e

s Free occurrence: one that is not bound

= Scope of binding: in A X. e, all occurrences in
e not in a subterm of the form A x. e’ (same

X)
= Free variables: all variables having free
occurrences In a term

11/7/23 83

i Example

= Label occurrences and scope:

(AX.YAY.Y (A X XY) X)X
12 34 56789

11/7/23

84

i Example

= Label occurrences and scope:

B fre /\ free
!

(kx.yky./\y(kx/.\xy)x)ﬁ
12 34 56789

11/7/23

85

i Untyped A-Calculus

= How do you compute with the
A-calculus?
= Roughly speaking, by substitution:

= (AX.e) e, =*e; e,/ X]

= * Modulo all kinds of subtleties to avoid
free variable capture

11/7/23

87

i Transition Semantics for \-Calculus

E->FE"
EE -->F F
= Application (version 1 - Lazy Evaluation)
(M x. E) E--> HE /X]
= Application (version 2 - Eager Evaluation)
E -->F"’
(AXx.E)E -->0x.EE"’

(A x. E) V--> A V/X]

V - variable or abstraction (value)

11/7/23 88

i How Powerful is the Untyped A-Calculus?

= The untyped A-calculus is Turing
Complete

« Can express any sequential computation

s Problems:

= How to express basic data: booleans,
iIntegers, etc?

= How to express recursion?

= Constants, if then_else, etc, are
conveniences; can be added as syntactic
sugar

11/7/23 89

i Typed vs Untyped A-Calculus

= The pure \-calculus has no notion of
type: (f f) is a legal expression

= Types restrict which applications are
valid

= Types are not syntactic sugar! They
disallow some terms

= Simply typed A-calculus is less powerful
than the untyped A-Calculus: NOT

Turing Complete (no recursion)

11/7/23 90

i o Conversion

1. o-conversion:

2. A X. exp -—a--> A Y. (exp [y/X])
3. Provided that

1. Y is not free in exp

>. No free occurrence of X in exp
becomes bound in exp when
replaced by y

AX. X (LY. XY)=-%X-> V. V(A V.Y Y)

11/7/23 92

i o Conversion Non-Examples

1. Error: y is not free in term second

kx.xy><> LY.VY
2. Error: free occurrence of x becomes
bound in wrong way when replaced by y

X LY. XV D> LY. AV
XA Y. XY, > LY. A Y. VY,
exp exply/x]

But AX.(Ay.y)X-—-0—->AY.(AYy.Y)Y
And A y. (A Y. Y)Y —o--> A X. (A V. Y) X

11/7/23 93

i Congruence

= Let ~ be a relation on lambda
terms. ~ is a congruence if

= it is an equivalence relation

s If e; ~ e, then
= (ee;) ~(egy)and (ee) ~ (e, €)
s A X e1N7\,X. ez

11/7/23

95

i o Equivalence

= o equivalence is the smallest
congruence containing o
conversion

= One usually treats a-equivalent
terms as equal - i.e. use «o
equivalence classes of terms

11/7/23 96

i Example

Show: A X. (A Y. Yy X) X ~a~ A Y. (A X. XY)Y
s AX. (AY.YX)X--0—->AZ. (AY.YZ)Z SO
AXc(AY. Y X)X ~a~ Az (AY. Y Z)Z
s (AY.yZ)--a—-> (A X.XZ) SO
(AYy.y Z) ~a~ (A X.XZ) SO
(AY.yZz)zZ~a~ (A X.XZ)ZSO
rMz.(AY.YZ)Z~o~v Az (MX.X2)Z
s AZ.(AX.X2)Z-a—->AY. (AX.XY)Y SO
MZ.(AX.XZ)Z~oa~ LY. (AX.XY)Y
B AX.(AY. Y X)X ~oa~v A Y. (AX. XY)Y

11/7/23 97

