Programming Languages and
Compilers (CS 421)

"

Elsa L Gunter
2112 SC, UIUC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

10/3/23

‘ Type Inference

= /ype inference: A program analysis to
assign a type to an expression from the
program context of the expression

= Fully static type inference first introduced
by Robin Miller in ML

= Haskle, OCAML, SML all use type inference

= Records are a problem for type
inference

10/3/23 2

Format of Type Judgments

» A type judgement has the form
I'|-exp:z
= [is a typing environment

= Supplies the types of variables (and function
names when function names are not variables)

» INisasetoftheform{ x:ic,...}

= For any xat most one o such that (x: ¢ e I')
= exXp is a program expression
= 1 is a type to be assigned to exp

= |- pronounced “turnstyle”, or “entails” (or
“satisfies” or, informally, “shows”)

10/3/23

‘ Axioms - Constants

|- n:int (assuming nis an integer constant)

I' |- true : bool I' |- false : bool

= These rules are true with any typing

environment
= I, n are meta-variables

10/3/23 4

‘ Axioms — Variables (Monomorphic Rule)

Notation: LetI'(X) = o ifxX:c e T
Note: if such o exits, its unique

Variable axiom:

ifI'(x)=o

'-x:o

10/3/23

‘ Simple Rules - Arithmetic

Primitive Binary operators (& e { +, -, *, ...}):
rl-eity Tl-6it (@):it—>1 13
rl-e®e6:;

Special case: Relations (~<¢<,>, = <=, >=3):
r-eg:t rl-:t (~)it— 11— bool
r|-e~ e :bool

For the moment, think = is int

10/3/23 6

‘ Example: {x:int} |-x + 2 = 3 :bool

What do we need to show first?

{x:int} |-x + 2 =3 : bool

10/3/23

‘ Example: {x:int} |- x + 2 = 3 :bool

What do we need for the left side?

{x:int} [-x+ 2 :int {x:int} |- 3 :inEE'
{x:int} |-x + 2 =3 : bool "

10/3/23 8

;‘ Example: {x:int} |- x + 2 = 3 :bool

How to finish?

{x:int} |- x:int {x:int} |- 2:intB_
{x:int} |-x+ 2 :int

" {x:int} |- 3 :int.
Bin

{x:int} |-x + 2 =3 : bool

10/3/23

;‘ Example: {x:int} |- x + 2 = 3 :bool

Complete Proof (type derivation)

Var Const
{x:int} |- x:int {x:int} |- 2:int n Const
{x:int} [-x+ 2 :int {x:int} |- 3 :inBtin
{x:int} |-x + 2 =3 : bool

10/3/23 10

‘ Simple Rules - Booleans

Connectives
|- :bool T |-e: bool

|- e && e : bool

I'|-e:bool T |-&: bool

I'|-¢e/le: bool

10/3/23

1

‘ Type Variables in Rules

= If then_else rule:
|- :bool T'|-e,:1t T'|-e5:1
I |-(if g thene, elsee;):

= T is a type variable (meta-variable)
= Can take any type at all

= All instances in a rule application must get
same type

= Then branch, else branch and if _then_else
must all have same type

10/3/23 12

‘ Function Application

= Application rule:
F|-6’1:‘Cl—)1¢2 Fl'EZ:Tl
rl-(e):n

= If you have a function expression e, of
type t; — 1, applied to an argument
&, of type 14, the resulting expression
e, 6 has type 1,

10/3/23 13

‘ Fun Rule

= Rules describe types, but also how the
environment I" may change

= Can only do what rule allows!
= fun rule:
x:y}r+r|-€e:1,
r|-funx->€e:1 —>10

10/3/23 14

‘ Fun Examples

{y:int}+Tr|-y+3:int
r|-funy->y+ 3 :int > int

{f:int > bool} + " |-f 2 :: [true] : bool list
[|- (funf->(f 2) :: [true])
: (int — bool) — bool list

10/3/23 15

‘ (Monomorphic) Let and Let Rec

= let rule:
F|-61:171 {X:T1}+F|'62:T2
I|-(letx=¢ineg):

= let rec rule:
{X: Tl} + T |' 6'1:‘51 {X: Tl} + T |' 62:'52
I'|-(letrecx=¢ing): 1,

10/3/23 16

‘ Example

= Which rule do we apply?

?

{} |- (letrecone =1:: onein
letx =2in
funy->(x::y::one)):int - int
list

10/3/23 17

‘ Example

= Let rec rule: @ {one : int list} |-
@ (letx = 2 in
{one : int list} |- funy-> (x::y::one))
(1::0ne):int list . int — int list
{} |- (letrecone =1 :: onein
letx =2in
funy->(x::y::one)):int — intlist

10/3/23 18

‘ Proof of 1

= Which rule?

{one : intlist} |- (1 :: one) : int list

‘ Proof of 1

= Binary Operator

® @

{one : int list} |- {one : int list} |-
1:int one : int list
{one : intlist} |- (1 :: one) : int list

where (::) :int — int list — int list

10/3/23 19 10/3/23 20
‘ Proof of 1 ‘ Proof of 2
= Let Rule {x:int; one : int list} |-
@ @ fun y ->
. (x :1y::one))
Constant Rule Variable Rule —_ . . o
Tone -t list) | Tone -t listh | {one : int list} |- 2:int :int — int list
. . {one : int list} |- (letx = 2in
1:int one : int list

{one : int list} |- (1 :: one) : int list

10/3/23 21

funy-> (x::y::one)):int — int list

10/3/23 22

‘ Proof of 2

@ {x:int; one : int list} |-

= Constant funy ->
(X i1y ::one))
{one : int list} |- 2:int : int — int list

{one :intlist} |- (letx =2in
funy-> (x::y::one)):int — int list

10/3/23 23

‘ Proof of 5

?

{x:int; one : int list} |- funy -> (x :: y :: one))
:int — int list

10/3/23 24

‘ Proof of 5

?

{y:int; x:int; one : int list} |- (x :: y :: one) : int list

{x:int; one : int list} |- funy -> (x :: y :: one))
:int — int list
By the Fun Rule

10/3/23 25

‘ Proof of 5

® @

{y:int; x:int; one:int list} {y:int; x:int; one:int list}
[- x:int [- (y :: one) : int list

{y:int; x:int; one : int list} |- (x :: y :: one) : int list

{x:int; one : int list} |- funy -> (x :: y :: one))
:int — int list
By BinOp where (::) : int — int list — int list

10/3/23 26

‘ Proof of 6

® @

Variable Rule
{y:int; x:int; one:int list} {y:int; x:int; one:int list}
|- x:int [- (v :: one) : int list

{y:int; x:int; one : int list} |- (x :: y :: one) : int list

{x:int; one : int list} |- funy -> (x :: y :: one))

‘ Proof of 7

= Binary Operation Rule

{...; one:int list;...}
{y:int; ...} |- y:int |- one : int list
{y:int; x:int; one : int list}|- (y :: one) : int list

Hint — int lst By BinOp where (::) : int — int list — int list
10/3/23 27 10/3/23 28
‘ Proof of 7 ‘ Curry - Howard Isomorphism
= Type Systems are logics; logics are type
Variable Rule _srystems tions: "
Variable Rule {...; one:int list;...} - Jppeis are propositions; propositions are
{y:int; ...} |- y:int |- one : int list

{y:int; x:int; one : int list}|- (y :: one) : int list

10/3/23 29

= Terms are proofs; proofs are terms

= Function space arrow corresponds to
implication; application corresponds to
modus ponens

10/3/23 30

‘ Curry - Howard Isomorphism

= Modus Ponens

A=B A
B
- Application
r-g:o—->p I'l-6:a
rl-(ee):p

10/3/23 31

‘ Review: In Class Activity

ACT 4

10/3/23 32

‘ Mea Culpa

= The above system can’ t handle polymorphism as
in OCAML

= No type variables in type language (only meta-
variable in the logic)

= Would need:

= Object level type variables and some kind of
type quantification

= let and let rec rules to introduce polymorphism

= Explicit rule to eliminate (instantiate)
polymorphism

10/3/23 33

‘ Support for Polymorphic Types

= Monomorpic Types (1):
= Basic Types: int, bool, float, string, unit, ...
= Type Variables: o, B, v, d, ¢
= Compound Types: o — B, int * string, bool list, ...
= Polymorphic Types:
= Monomorphic types t©
= Universally quantified monomorphic types
= Yoy, oo, 007
= Can think of t as same as V. t

10/3/23 34

‘ Example FreeVars Calculations

= Vars(a -> (int ->'b) -> 'a) ={"a, 'b}

= FreeVars (All 'b. ‘a -> (int ->'b) -> 'a) =
= {a,'b}-{b}={a}

= FreeVars {x : All'b. ‘a -> (int -> 'b) -> g,
= id: All'c. '‘c->'c,
sy:All'c.'a->'b->'c} =

= {'a} U{} U {%a, 'b} = {'a, 'b}

10/3/23 35

‘ Support for Polymorphic Types

= Typing Environment T" supplies polymorphic types
(which will often just be monomorphic) for
variables

= Free variables of monomorphic type just type
variables that occur in it
= Write FreeVars(t)

= Free variables of polymorphic type removes
variables that are universally quantified
= FreeVars(Voy, ..., o, . ©) = FreeVars(t) — {oy, ... , an }

= FreeVars(I') = all FreeVars of types in range of I'

10/3/23 36

‘ Monomorphic to Polymorphic

= Given:
= type environment I
= monomorphic type t
= T shares type variables with I’

= Want most polymorphic type for t that
doesn’ t break sharing type variables with I’

= Gen(t, ') =Vay, ..., o, . T Where
{oy, ... , o} = freeVars(t) — freeVars(I')

10/3/23 37

‘ Polymorphic Typing Rules

» A type judgement has the form
I'|-exp:t

= I uses polymorphic types
=« still monomorphic

= Most rules stay same (except use more general
typing environments)

= Rules that change:
= Variables
= Let and Let Rec
= Allow polymorphic constants

= Worth noting functions again

10/3/23 38

‘ Polymorphic Let and Let Rec

= let rule:
F|-e; i1 {x:Gen(x, M)} +T|-6:1
F|-(letex=¢ineg):

= let rec rule:
{X: Tl} + F |' 6’1:‘51 {XGen(Tl,r)} + F |' 6’21‘52
I'|-(letrecx=6ing): 1,

10/3/23 39

‘ Polymorphic Variables (Identifiers)

Variable axiom:

Cl-x:0t) ifT(X) =vay, ...,0,.7

= Where ¢ replaces all occurrences of
oy, -, 0, by monotypes 1y, ..., 1,

= Note: Monomorphic rule special case:

ifI(x) =1

= Constants treated same way

10/3/23 40

rl-x:z

‘ Fun Rule Stays the Same

= fun rule:
xX:iy}r+T|-€:1,
Fl-funx->éei1 -1

= Types 14, T, monomorphic

= Function argument must always be
used at same type in function body

10/3/23 41

‘ Polymorphic Example

= Assume additional constants and primitive
operators:

= hd :vo. a list -> a

w tl: Va. a list -> a list

= is_empty : Vo. o list -> bool
s (3 iyo. a-> alist -> o list
m [] ya. o list

10/3/23 42

‘ Polymorphic Example

= Show:

{} |- let rec length =
fun | -> if is_empty | then 0
else 1 + length (tl I)
in length (2 :: []) + length(true :: []) : int

‘ Polymorphic Example: Let Rec Rule

= Show: (1) (2)

{length:a list -> int} {length:Va. a list -> int}
[- funl-> ... |- length (2 :: []) +
:alist -> int length(true :: []) : int

{} |- let rec length =
fun | -> if is_empty | then 0
else 1 + length (tl I)
in length (2 :: []) + length(true :: []) : int

10/3/23 43 10/3/23 44
‘ Polymorphic Example (1) ‘ Polymorphic Example (1): Fun Rule
= Show: = Show: (3)

{length:a list -> int} |-
fun | -> if is_empty | then 0

else 1 + length (tl I)
o list -> int

10/3/23

45

{length:a list -> int, I: o list } |-
if is_empty | then 0
else length (hd I) + length (tI'l) :int

{length:a list -> int} |-
fun | -> if is_empty | then 0

else 1 + length (tl I)
s o list -> int

10/3/23 46

‘ Polymorphic Example (3)

s Let T ={length:a list -> int, I: a list }
= Show

P

I'|- if is_empty | then 0
else 1 + length (tl 1) :int

10/3/23

47

‘ Polymorphic Example (3):IfThenElse

» Let T ={length:a list -> int, I: o list }
= Show

(4) (5) (6)
I'|-is_empty | T|-0:int T|-1+ length (tl 1)
: bool :int

I'|- if is_empty | then 0
else 1 + length (tl 1) :int

10/3/23 48

‘ Polymorphic Example (4)

s Let T ={length:a list -> int, I: o list }
= Show

?

I'|- is_empty | : bool

10/3/23

49

‘ Polymorphic Example (4):Application

» Let I ={length:a list -> int, I: o list }
= Show

? ?

I'|-is_empty : a list -> bool I-1: o list

I'|- is_empty | : bool

10/3/23 50

‘ Polymorphic Example (4)

s Let T ={length:a list -> int, I: a list }
= Show

By Const since a list -> bool is
instance of Va. a list -> bool ?

I'|-is_empty : « list -> bool

|- 1: o list

I'|- is_empty | : bool

10/3/23

51

‘ Polymorphic Example (4)

s Let T ={length:a list -> int, I: o list }
= Show

By Const since a list -> bool is By Variable
instance of Va. a list -> bool I'(l) = o list

I'|-is_empty : a list -> bool -1: o list

I'|- is_empty | : bool
= This finishes (4)

10/3/23 52

‘ Polymorphic Example (5):Const

s Let T ={length:a list -> int, I: a list }
= Show
By Const Rule

I'|- 0:int

10/3/23

53

‘ Polymorphic Example (6):Arith Op

» Let T ={length:a list -> int, I: o list }
= Show

By Variable

I'|- length (7)
By Const salist->int T[- (1) : o list
I'|- 1:int I'|- length (tI']) : int

I'|-1+length (tl1) : int

10/3/23 54

‘ Polymorphic Example (7):App Rule

s Let T ={length:a list -> int, I: o list }
= Show

By Const

I|-tl: alist-> alist

By Variable
Il-1: alist

|- (t 1) : a list

By Const since a list -> « list is instance of
Ya. o list -> o list

10/3/23 55

‘ Polymorphic Example: (2) by ArithOp

= Let I'" = {length:Va. a list -> int}
= Show:

(8) 9
r |- r |-
length (2 :: []) :int length(true :: []) : int

{length:Va. a list -> int}
|- length (2 :: []) + length(true :: []) : int

10/3/23 56

‘ Polymorphic Example: (8)AppRule

» Let " = {length:Vo.. a list -> int}
= Show:

I’ |- length : int list ->int T |- (2 :: []) :int list

I’ |-length (2 :: []) :int

10/3/23 57

