
1/30/24 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
https://courses.engr.illinois.edu/cs421/fa2017/CS421D

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

Evaluating declarations

n Evaluation uses an environment r
n To evaluate a (simple) declaration let x = e

n Evaluate expression e in r to value v
n Update r with x ® v: {x ® v} + r

1/30/24 2

Evaluating declarations

n Evaluation uses an environment r
n To evaluate a (simple) declaration let x = e

n Evaluate expression e in r to value v
n Update r with x v: {x ® v} + r

n Update: r1+ r2 has all the bindings in r1 and
all those in r2 that are not rebound in r1

{x ® 2, y ® 3, a ® “hi”} + {y ® 100, b ® 6}
= {x ® 2, y ® 3, a ® “hi”, b ® 6}
1/30/24 3

Evaluating expressions in OCaml

n Evaluation uses an environment r
n A constant evaluates to itself, including

primitive operators like + and =

1/30/24 4

Evaluating expressions in OCaml

n Evaluation uses an environment r
n A constant evaluates to itself, including

primitive operators like + and =
n To evaluate a variable, look it up in r: r(v)

1/30/24 5

Evaluating expressions in OCaml

n Evaluation uses an environment r
n A constant evaluates to itself, including

primitive operators like + and =
n To evaluate a variable, look it up in r: r(v)
n To evaluate a tuple (e1,…,en),

n Evaluate each ei to vi, right to left for Ocaml
n Then make value (v1,…,vn)

1/30/24 6

Evaluating expressions in OCaml

n To evaluate uses of +, - , etc, eval args,
then do operation

1/30/24 7

Evaluating expressions in OCaml

n To evaluate uses of +, - , etc, eval args,
then do operation

n Function expression evaluates to its closure

1/30/24 8

Evaluating expressions in OCaml

n To evaluate uses of +, - , etc, eval args,
then do operation

n Function expression evaluates to its closure
n To evaluate a local dec: let x = e1 in e2

n Eval e1 to v, then eval e2 using {x ® v} + r

1/30/24 9

Evaluating expressions in OCaml

n To evaluate uses of +, - , etc, eval args
(right to left for Ocaml), then do operation

n Function expression evaluates to its closure
n To evaluate a local dec: let x = e1 in e2

n Eval e1 to v, then eval e2 using {x ® v} + r
n To evaluate a conditional expression:

if b then e1 else e2
n Evaluate b to a value v
n If v is True, evaluate e1
n If v is False, evaluate e2

1/30/24 10

1/30/24 11

Evaluation of Application with Closures

n Given application expression f e
n In Ocaml, evaluate e to value v
n In environment r, evaluate left term to closure,

c = <(x1,…,xn) ® b, r’>
n (x1,…,xn) variables in (first) argument
n v must have form (v1,…,vn)

n Update the environment r’ to
r’’ = {x1 ® v1,…, xn ®vn}+ r’

n Evaluate body b in environment r’’
1/30/24 33

Recursive Functions

let rec factorial n =
if n = 0 then 1 else n * factorial (n - 1);;

val factorial : int -> int = <fun>
factorial 5;;
- : int = 120
(* rec is needed for recursive function

declarations *)

1/30/24 34

Recursion Example

Compute n2 recursively using:
n2 = (2 * n - 1) + (n - 1)2

let rec nthsq n = (* rec for recursion *)
match n (* pattern matching for cases *)
with 0 -> 0 (* base case *)
| n -> (2 * n -1) (* recursive case *)

+ nthsq (n -1);; (* recursive call *)
val nthsq : int -> int = <fun>
nthsq 3;;
- : int = 9

Structure of recursion similar to inductive proof

1/30/24 35

Recursion and Induction

let rec nthsq n = match n with 0 -> 0
| n -> (2 * n - 1) + nthsq (n - 1) ;;

n Base case is the last case; it stops the computation
n Recursive call must be to arguments that are

somehow smaller - must progress to base case
n if or match must contain base case
n Failure of these may cause failure of termination

1/30/24 36

Lists

n List can take one of two forms:
n Empty list, written []
n Non-empty list, written x :: xs

n x is head element, xs is tail list, :: called
“cons”

n Syntactic sugar: [x] == x :: []
n [x1; x2; …; xn] == x1 :: x2 :: … :: xn :: []

1/30/24 37

Lists

let fib5 = [8;5;3;2;1;1];;
val fib5 : int list = [8; 5; 3; 2; 1; 1]
let fib6 = 13 :: fib5;;
val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]
(8::5::3::2::1::1::[]) = fib5;;
- : bool = true
fib5 @ fib6;;
- : int list = [8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1;

1]

1/30/24 38

Lists are Homogeneous

let bad_list = [1; 3.2; 7];;
Characters 19-22:

let bad_list = [1; 3.2; 7];;
^^^

This expression has type float but is here
used with type int

1/30/24 39

Question

n Which one of these lists is invalid?

1. [2; 3; 4; 6]
2. [2,3; 4,5; 6,7]
3. [(2.3,4); (3.2,5); (6,7.2)]
4. [[“hi”; “there”]; [“wahcha”]; []; [“doin”]]

1/30/24 40

Answer

n Which one of these lists is invalid?

1. [2; 3; 4; 6]
2. [2,3; 4,5; 6,7]
3. [(2.3,4); (3.2,5); (6,7.2)]
4. [[“hi”; “there”]; [“wahcha”]; []; [“doin”]]

§ 3 is invalid because of last pair

1/30/24 41

Functions Over Lists

let rec double_up list =
match list
with [] -> [] (* pattern before ->,

expression after *)
| (x :: xs) -> (x :: x :: double_up xs);;

val double_up : 'a list -> 'a list = <fun>
let fib5_2 = double_up fib5;;
val fib5_2 : int list = [8; 8; 5; 5; 3; 3; 2; 2; 1;

1; 1; 1]

1/30/24 42

Functions Over Lists

let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"]
let rec poor_rev list =
match list
with [] -> []

| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>
poor_rev silly;;
- : string list = ["there"; "there"; "hi"; "hi"]

1/30/24 44

Structural Recursion

n Functions on recursive datatypes (eg lists)
tend to be recursive

n Recursion over recursive datatypes generally
by structural recursion
n Recursive calls made to components of structure

of the same recursive type
n Base cases of recursive types stop the recursion

of the function

Question: Length of list

n Problem: write code for the length of the list
n How to start?

let rec length list =

1/30/24 45

Question: Length of list

n Problem: write code for the length of the list
n How to start?

let rec length list =
match list with

1/30/24 46

Question: Length of list

n Problem: write code for the length of the list
n What patterns should we match against?

let rec length list =
match list with

1/30/24 47

Question: Length of list

n Problem: write code for the length of the list
n What patterns should we match against?

let rec length list =
match list with [] ->
| (a :: bs) ->

1/30/24 48

Question: Length of list

n Problem: write code for the length of the list
n What result do we give when list is empty?

let rec length list =
match list with [] ->
| (a :: bs) ->

1/30/24 49

Question: Length of list

n Problem: write code for the length of the list
n What result do we give when list is empty?

let rec length list =
match list with [] -> 0
| (a :: bs) ->

1/30/24 50

Question: Length of list

n Problem: write code for the length of the list
n What result do we give when list is not empty?

let rec length list =
match list with [] -> 0
| (a :: bs) ->

1/30/24 51

Question: Length of list

n Problem: write code for the length of the list
n What result do we give when list is not empty?

let rec length list =
match list with [] -> 0
| (a :: bs) -> 1 + length bs

1/30/24 52

1/30/24 53

Structural Recursion : List Example

let rec length list = match list
with [] -> 0 (* Nil case *)
| a :: bs -> 1 + length bs;; (* Cons case *)

val length : 'a list -> int = <fun>
length [5; 4; 3; 2];;
- : int = 4
n Nil case [] is base case
n Cons case recurses on component list bs

Same Length

n How can we efficiently answer if two lists
have the same length?

1/30/24 54

Same Length

n How can we efficiently answer if two lists
have the same length?

let rec same_length list1 list2 =
match list1 with [] ->

(match list2 with [] -> true
| (y::ys) -> false)

| (x::xs) ->
(match list2 with [] -> false

| (y::ys) -> same_length xs ys)
1/30/24 55

Same Length

n How can we efficiently answer if two lists
have the same length?

let rec same_length list1 list2 =
match list1 with [] ->

(match list2 with [] -> true
| (y::ys) -> false)

| (x::xs) ->
(match list2 with [] -> false

| (y::ys) -> same_length xs ys)
2/1/24 56

Same Length

n How can we efficiently answer if two lists
have the same length?

let rec same_length list1 list2 =
match list1 with [] ->

(match list2 with [] -> true
| (y::ys) -> false)

| (x::xs) ->
(match list2 with [] -> false

| (y::ys) -> same_length xs ys)
2/1/24 57

Same Length

n How can we efficiently answer if two lists
have the same length?

let rec same_length list1 list2 =
match list1 with [] ->

(match list2 with [] -> true
| (y::ys) -> false)

| (x::xs) ->
(match list2 with [] -> false

| (y::ys) -> same_length xs ys)
2/1/24 58

Same Length

n How can we efficiently answer if two lists
have the same length?

let rec same_length list1 list2 =
match list1 with [] ->

(match list2 with [] -> true
| (y::ys) -> false)

| (x::xs) ->
(match list2 with [] -> false

| (y::ys) -> same_length xs ys)
2/1/24 59

Same Length

n How can we efficiently answer if two lists
have the same length?

let rec same_length list1 list2 =
match list1 with [] ->

(match list2 with [] -> true
| (y::ys) -> false)

| (x::xs) ->
(match list2 with [] -> false

| (y::ys) -> same_length xs ys)
2/1/24 60

Your turn: doubleList : int list -> int list

n Write a function that takes a list of int and
returns a list of the same length, where each
element has been multiplied by 2

let rec doubleList list =

1/30/24 62

Your turn: doubleList : int list -> int list

n Write a function that takes a list of int and
returns a list of the same length, where each
element has been multiplied by 2

let rec doubleList list =
match list

with [] ->[]
| x :: xs -> (2 * x) :: doubleList xs

1/30/24 63

Your turn: doubleList : int list -> int list

n Write a function that takes a list of int and
returns a list of the same length, where each
element has been multiplied by 2

let rec doubleList list =
match list

with [] ->[]
| x :: xs -> (2 * x) :: doubleList xs

1/30/24 64 1/30/24 65

Folding Recursion

n Another common form “folds” an operation
over the elements of the structure

let rec multList list = match list
with [] -> 1
| x::xs -> x * multList xs;;

val multList : int list -> int = <fun>
multList [2;4;6];;
- : int = 48
n Computes (2 * (4 * (6 * 1)))

1/30/24 66

Folding Recursion : Length Example

let rec length list = match list
with [] -> 0 (* Nil case *)
| a :: bs -> 1 + length bs;; (* Cons case *)

val length : 'a list -> int = <fun>
length [5; 4; 3; 2];;
- : int = 4
n Nil case [] is base case, 0 is the base value
n Cons case recurses on component list bs
n What do multList and length have in common?

1/30/24 68

Forward Recursion

n In Structural Recursion, split input into
components and (eventually) recurse

n Forward Recursion form of Structural
Recursion

n In forward recursion, first call the function
recursively on all recursive components, and
then build final result from partial results

n Wait until whole structure has been
traversed to start building answer

1/30/24 69

Forward Recursion: Examples

let rec double_up list =
match list
with [] -> []

| (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
match list
with [] -> []

| (x::xs) -> let r = poor_rev xs in r @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

1/30/24 70

Forward Recursion: Examples

let rec double_up list =
match list
with [] -> []

| (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

Base Case Operator Recursive Call
let rec poor_rev list =
match list
with [] -> []

| (x::xs) -> let r = poor_rev xs in r @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

Base Case Operator Recursive Call

1/30/24 71

Recursing over lists

let rec fold_right f list b =
match list
with [] -> b
| (x :: xs) -> f x (fold_right f xs b);;

val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b =
<fun>

fold_right
(fun s -> fun () -> print_string s)
["hi"; "there"]
();;

therehi- : unit = ()

The Primitive
Recursion Fairy

1/30/24 72

Folding Recursion : Length Example

let rec length list = match list
with [] -> 0 (* Nil case *)
| a :: bs -> 1 + length bs;; (* Cons case *)

val length : 'a list -> int = <fun>
let length list =
fold_right (fun a -> fun r -> 1 + r) list 0;;
val length : 'a list -> int = <fun>
length [5; 4; 3; 2];;
- : int = 4

1/30/24 73

Forward Recursion: Examples

let rec double_up list =
match list
with [] -> []

| (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

Base Case Operator Recursive Call
let double_up =

fold_right (fun x -> fun r -> x :: x :: r) list []
Operator Recursive result Base Case

double_up ["a";"b"];;
- : string list = ["a"; "a"; "b"; "b"]

n let rec multList_fr list =
match list

with [] -> 1
| (x::xs) -> let r = (multList_fr ns) in

(x * r)

1/30/24 74

1/30/24 75

Folding Recursion

n multList folds to the right
n Same as:
let multList list =

List.fold_right
(fun x -> fun p -> x * p)
list 1;;

val multList : int list -> int = <fun>
multList [2;4;6];;
- : int = 48

1/30/24 89

Terminology

n Available: A function call that can be
executed by the current expression

n The fastest way to be unavailable is to be
guarded by an abstraction (anonymous
function, lambda lifted).
n if (h x) then f x else (x + g x)
n if (h x) then (fun x -> f x) else (g (x + x))

Not available

1/30/24 90

Terminology

n Tail Position: A subexpression s of
expressions e, which is available and such
that if evaluated, will be taken as the value
of e (last thing done in this expression)
n if (x>3) then x + 2 else x - 4
n let x = 5 in x + 4

n Tail Call: A function call that occurs in tail
position
n if (h x) then f x else (x + g x)

1/30/24 91

Tail Recursion

n A recursive program is tail recursive if all
recursive calls are tail calls

n Tail recursive programs may be optimized to
be implemented as loops, thus removing the
function call overhead for the recursive calls

n Tail recursion generally requires extra
“accumulator” arguments to pass partial
results
n May require an auxiliary function

Tail Recursion - length

n How can we write length with tail recursion?
let length list =

let rec length_aux list acc_length =
match list
with [] -> acc_length

| (x::xs) ->
length_aux xs (1 + acc_length)

in length_aux list 0

1/30/24 92

Your turn: num_neg – tail recursive

let num_neg list =

1/30/24 95

Your turn: num_neg – tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =

in num_neg_aux ? ?

1/30/24 96

Your turn: num_neg – tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =

match list with [] ->
| (x :: xs) ->

in num_neg_aux ? ?

1/30/24 97

Your turn: num_neg – tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =

match list with [] -> curr_neg
| (x :: xs) ->

in num_neg_aux ? ?

1/30/24 98

Your turn: num_neg – tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =

match list with [] -> curr_neg
| (x :: xs) ->

num_neg_aux xs ?

in num_neg_aux ? ?

1/30/24 99

Your turn: num_neg – tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =

match list with [] -> curr_neg
| (x :: xs) ->

num_neg_aux xs
(if x < 0 then 1 + curr_neg
else curr_neg)

in num_neg_aux ? ?

1/30/24 100

Your turn: num_neg – tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =

match list with [] -> curr_neg
| (x :: xs) ->

num_neg_aux xs
(if x < 0 then 1 + curr_neg
else curr_neg)

in num_neg_aux list ?

1/30/24 101

Your turn: num_neg – tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =

match list with [] -> curr_neg
| (x :: xs) ->

num_neg_aux xs
(if x < 0 then 1 + curr_neg
else curr_neg)

in num_neg_aux list 0

1/30/24 102

let num_neg list =
List.fold_left

(fun curr_neg -> (fun x ->
(if x < 0 then 1 + curr_neg else curr_neg)

)
)

0
list

2/1/24 103

1/30/24 123

Folding

let rec fold_left f a list = match list
with [] -> a | (x :: xs) -> fold_left f (f a x) xs;;

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a =
<fun>

fold_left f a [x1; x2;…;xn] = f(…(f (f a x1) x2)…)xn

let rec fold_right f list b = match list
with [] -> b | (x :: xs) -> f x (fold_right f xs b);;

val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b =
<fun>

fold_right f [x1; x2;…;xn] b = f x1(f x2 (…(f xn b)…))

1/30/24 124

Folding

n Can replace recursion by fold_right in any
forward primitive recursive definition
n Primitive recursive means it only recurses on

immediate subcomponents of recursive data
structure

n Can replace recursion by fold_left in any tail
primitive recursive definition

1/30/24 125

Mapping Recursion

let rec map f list =
match list
with [] -> []
| (h::t) -> (f h) :: (map f t);;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
map plus_two fib5;;
- : int list = [10; 7; 5; 4; 3; 3]
map (fun x -> x - 1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; 0]

1/30/24 126

Map is forward recursive

let rec map f list =
match list
with [] -> []
| (h::t) -> (f h) :: (map f t);;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
let map f list =

List.fold_right (fun h -> fun r -> (f h) :: r)
list [];;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

1/30/24 127

Mapping Recursion

n Can use the higher-order recursive map
function instead of direct recursion

let doubleList list =
List.map (fun x -> 2 * x) list;;

val doubleList : int list -> int list = <fun>
doubleList [2;3;4];;
- : int list = [4; 6; 8]
Same function, but no rec

1/30/24 128

Mapping Recursion

n Can use the higher-order recursive map
function instead of direct recursion

let doubleList list =
List.map (fun x -> 2 * x) list;;

val doubleList : int list -> int list = <fun>
doubleList [2;3;4];;
- : int list = [4; 6; 8]
n Same function, but no explicit recursion

