Programming Languages and
Compilers (CS 421)

i

L
Elsa L Gunter ﬁ

2112 SC, UIUC
https://courses.engr.illinois.edu/cs421/fa2017/CS421D

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

1/30/24 1

‘ Evaluating declarations

= Evaluation uses an environment p

= To evaluate a (simple) declaration let x = e
= Evaluate expression e in p to value v
= Update pwithx > vi {Xx > v} +p

1/30/24 2

;‘ Evaluating declarations

= Evaluation uses an environment p

= To evaluate a (simple) declaration let x = e
= Evaluate expression e in p to value v
= Update p withxv: {x > v} +p

= Update: p,+ p, has all the bindings in p; and
all those in p, that are not rebound in p;

{x—>2,y—>3a-"hi"t +{y > 100, b - 6}
={x—>2,y—>3,a->"hi" b6}

1/30/24 3

‘ Evaluating expressions in OCaml

= Evaluation uses an environment p

= A constant evaluates to itself, including
primitive operators like + and =

1/30/24 4

‘ Evaluating expressions in OCaml

= Evaluation uses an environment p

= A constant evaluates to itself, including
primitive operators like + and =

= To evaluate a variable, look it up in p: p(v)

1/30/24 5

‘ Evaluating expressions in OCaml

= Evaluation uses an environment p

= A constant evaluates to itself, including
primitive operators like + and =

= To evaluate a variable, look it up in p: p(v)
= To evaluate a tuple (ey,...,.e,),

= Evaluate each g, to v,, right to left for Ocaml
= Then make value (vy,...,v,)

1/30/24 6

‘ Evaluating expressions in OCaml

= To evaluate uses of +, -, etc, eval args,
then do operation

1/30/24 7

‘ Evaluating expressions in OCaml

= To evaluate uses of +, -, etc, eval args,
then do operation
= Function expression evaluates to its closure

1/30/24 8

‘ Evaluating expressions in OCaml

= To evaluate uses of +, -, etc, eval args,
then do operation
= Function expression evaluates to its closure

= To evaluate a local dec: let x = el in e2
= Eval el to v, then eval e2 using {x — v} + p

1/30/24 9

‘ Evaluating expressions in OCaml

= To evaluate uses of +, -, etc, eval args

(right to left for Ocaml), then do operation
= Function expression evaluates to its closure
= To evaluate a local dec: let x = el in e2

= Eval el to v, then eval e2 using {x — v} + p
= To evaluate a conditional expression:

if b then el else e2

= Evaluate b to a value v

= If vis True, evaluate el

= If v is False, evaluate e2

1/30/24 10

Evaluation of Application with Closures

= Given application expression f e
= In Ocaml, evaluate e to value v

= In environment p, evaluate left term to closure,
€ = <(Xy,...,X,) > b, p">

s (Xq,...,X,) variables in (first) argument
= v must have form (vy,...,v,)

= Update the environment p’ to
p" = {Xl - Vll"'l Xn _)Vn}+ p,

= Evaluate body b in environment p”

1/30/24 11

‘ Recursive Functions

let rec factorial n =
if n = 0 then 1 else n * factorial (n - 1);;
val factorial : int -> int = <fun>
factorial 5;;
-:int =120
(* rec is needed for recursive function
declarations *)

1/30/24 33

‘ Recursion Example

Compute n? recursively using:
n=2*n-1)+ (n-1)?

let rec nthsg n = (* rec for recursion *)

match n (* pattern matching for cases *)
with 0 -> 0 (* base case *)
| n->(2*n-1) (* recursive case *)

+ nthsq (n -1);; (* recursive call *)
val nthsq : int -> int = <fun>
nthsq 3;;
- 1int=9

‘ Recursion and Induction

let rec nthsq n = match n with 0 -> 0
[n->(2*n-1)+nthsqg(n-1);;

Structure of recursion similar to inductive proof

= Base case is the last case; it stops the computation

= Recursive call must be to arguments that are
somehow smaller - must progress to base case

= if or match must contain base case
= Failure of these may cause failure of termination

1/30/24

34

1/30/24 35

‘ Lists

= List can take one of two forms:
= Empty list, written []
= Non-empty list, written x :: xs

= X is head element, xs is tail list, :: called
££c0ns”

= Syntactic sugar: [x] ==x:: []
s [X1;X2; .o xn]==x1:ux2:.axn[]

1/30/24

36

‘ Lists

let fib5 = [8;5;3;2;1;1];;

val fib5 :intlist =[8; 5; 3; 2; 1; 1]

let fib6 = 13 :: fib5;;

val fib6 :intlist = [13; 8; 5; 3; 2; 1; 1]

(8::5::3::2::1::1::[]) = fib5;;

- : bool = true

fib5 @ fib6;;

- i]nt list=1[8;5;3;2;1;,1;,13;8; 5; 3; 2; 1;
1

1/30/24 37

‘ Lists are Homogeneous

let bad_list = [1; 3.2; 7];;
Characters 19-22:
let bad_list = [1; 3.2; 7];;

NANN

This expression has type float but is here
used with type int

1/30/24

38

‘ Question

= Which one of these lists is invalid?

. [2; 3; 4; 6]

. [2,3; 4,5; 6,7]

. [(2.3,4); (3.2,5); (6,7.2)]

. [[“hi”; “there™]; [“wahcha”™]; []; [“doin”]]

A W N =

1/30/24 39

‘ Answer

= Which one of these lists is invalid?

[2; 3; 4; 6]

[2,3; 4,5; 6,7]

[(2.3,4); (3.2,5); (6,7.2)]

[[“hi”; “there”]; [“wahcha”]; [1; [“doin”]]

H N

= 3 s invalid because of last pair

1/30/24 40

‘ Functions Over Lists

let rec double_up list =
match list
with []->[] (* pattern before ->,
expression after *)
| (x ::xs)->(x::x:: double_up xs);;
val double_up : 'a list -> 'a list = <fun>
let fib5_2 = double_up fib5;;
val fib5_2 :intlist = [8; 8; 5; 5; 3; 3; 2; 2; 1;
1;1; 1]

1/30/24 41

‘ Functions Over Lists

let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"]
let rec poor_rev list =

match list

with [1->[]

| (x::xs) -> poor_rev xs @ [X];;

val poor_rev : 'a list -> 'a list = <fun>
poor_rev silly;;
- : string list = ["there"; "there"; "hi"; "hi"]

1/30/24 42

‘ Structural Recursion

= Functions on recursive datatypes (eg lists)
tend to be recursive

= Recursion over recursive datatypes generally
by structural recursion

= Recursive calls made to components of structure
of the same recursive type

= Base cases of recursive types stop the recursion
of the function

1/30/24 44

‘ Question: Length of list

= Problem: write code for the length of the list
= How to start?

let rec length list =

1/30/24 45

‘ Question: Length of list

= Problem: write code for the length of the list
= How to start?

let rec length list =
match list with

1/30/24 46

‘ Question: Length of list

= Problem: write code for the length of the list
« What patterns should we match against?

let rec length list =
match list with

1/30/24 47

‘ Question: Length of list

= Problem: write code for the length of the list
=« What patterns should we match against?

let rec length list =
match list with [] ->
| (@:: bs)->

1/30/24 48

‘ Question: Length of list

= Problem: write code for the length of the list
= What result do we give when list is empty?
let rec length list =
match list with [] ->
| (a:: bs)->

1/30/24 49

‘ Question: Length of list

= Problem: write code for the length of the list
= What result do we give when list is empty?
let rec length list =
match list with []-> 0
| (a::bs)->

1/30/24 50

‘ Question: Length of list

= Problem: write code for the length of the list
= What result do we give when list is not empty?

let rec length list =
match list with [] -> 0
| (@:: bs)->

1/30/24 51

‘ Question: Length of list

= Problem: write code for the length of the list
= What result do we give when list is not empty?
let rec length list =
match list with []-> 0
| (@::bs)->1+ length bs

1/30/24 52

‘ Structural Recursion : List Example

let rec length list = match list
with []-> 0 (* Nil case *)
| a::bs->1+ length bs;; (* Cons case *)

val length : 'a list -> int = <fun>

length [5; 4; 3; 2];;

-:int=4

= Nil case [] is base case

= Cons case recurses on component list bs

1/30/24 53

‘ Same Length

= How can we efficiently answer if two lists
have the same length?

1/30/24 54

‘ Same Length

= How can we efficiently answer if two lists
have the same length?

let rec same_length list1 list2 =
match listl with [] ->

| (X::xs) ->

1/30/24 55

‘ Same Length

= How can we efficiently answer if two lists
have the same length?

let rec same_length list1 list2 =
match listl with [] ->
(match list2 with [] -> true
| (y::ys) -> false)
| (x::xs) ->

2/1/24 56

‘ Same Length

= How can we efficiently answer if two lists
have the same length?

let rec same_length list1 list2 =
match listl with [] ->
(match list2 with [] ->
| (y::ys) ->)
| (x::xs) ->

2/1/24 57

‘ Same Length

= How can we efficiently answer if two lists
have the same length?

let rec same_length list1 list2 =
match listl with [] ->
(match list2 with [] -> true
| (y::ys) -> false)
| (x::xs) ->
(match list2 with [] ->
| (y::ys) ->)

2/1/24 58

‘ Same Length

= How can we efficiently answer if two lists
have the same length?

let rec same_length list1 list2 =
match listl with [] ->
(match list2 with [] -> true
| (y::ys) -> false)
| (X::xs) ->
(match list2 with [] -> false
| (y::ys) ->)

2/1/24 59

‘ Same Length

= How can we efficiently answer if two lists
have the same length?

let rec same_length list1 list2 =
match listl with [] ->
(match list2 with [] -> true
| (y::ys) -> false)
| (x::xs) ->
(match list2 with [] -> false
| (y::ys) -> same_length xs ys)

2/1/24 60

;‘ Your turn: doubleList : int list -> int list

= Write a function that takes a list of int and
returns a list of the same length, where each
element has been multiplied by 2

let rec doubleList list =

1/30/24 62

;‘ Your turn: doubleList : int list -> int list

= Write a function that takes a list of int and
returns a list of the same length, where each
element has been multiplied by 2

let rec doubleList list =
match list
with [->[]
| x::xs->(2*x):: doubleList xs

1/30/24 63

‘ Your turn: doubleList : int list -> int list

= Write a function that takes a list of int and
returns a list of the same length, where each
element has been multiplied by 2

let rec doubleList list =
match list

| :: xs|-> [2 * x) :| doubleList xs
=

1/30/24 64

‘ Folding Recursion

= Another common form “folds” an operation
over the elements of the structure

let rec multList list = match list
with[]->1
| X::xs -> x * multList xs;;
val multList : int list -> int = <fun>
multList [2;4;6];;
-:int =48

= Computes (2 * (4 * (6 * 1)))

1/30/24 65

‘ Folding Recursion : Length Example

let rec length list = match list
with [T-> 0 (* Nil case *)
| a::bs->1+ length bs;; (* Cons case *)
val length : 'a list -> int = <fun>
length [5; 4; 3; 21;;
-:int=4
= Nil case [] is base case, 0 is the base value
= Cons case recurses on component list bs
= What do multList and length have in common?

1/30/24 66

Forward Recursion

= In Structural Recursion, split input into
components and (eventually) recurse

= Forward Recursion form of Structural
Recursion

= In forward recursion, first call the function
recursively on all recursive components, and
then build final result from partial results

= Wait until whole structure has been
traversed to start building answer

1/30/24 68

‘ Forward Recursion: Examples

let rec double_up list =
match list
with[]->1]]
| (x::xs)->(x::x:: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
match list
with []-> []
| (X::xs) -> let r = poor_rev xsinr @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

1/30/24 69

Forward Recursion: Examples

let rec double_up list =

match list
with []->
| (x::x8) ->[(x :: x ::jdouble_up xs);;
val double : 'alist ->f"a fist = <fuRx_

Base Case | | Operator || Recursive Call|
let rec poor_rev list =
match list
with [] ->
| (x::x)sé)/->| let r = poor_rev xs in r|i@ [x];; |
poor_rév : 'a list -> 'a list =<fup>
Base Case | | Operator || Recursive Call|

1/30/24 70

va

Recursing over lists

let rec fold_right f list b =
match list 0\
with []->b The Primitive
| (x:: xs) -> f x (fold_right f xs b);; Recursion Fairy

val fold_right : ('a->'b->'b) ->"alist->'b->"'b =

<fun>
fold_right
(fun s -> fun () -> print_string s)
["hi"; "there"]
Orr

therehi- : unit = ()

1/30/24 71

‘ Folding Recursion : Length Example

let rec length list = match list
with []->0 (* Nil case *)
| a::bs-> 1+ length bs;; (* Cons case *)
val length : 'a list -> int = <fun>
let length list =
fold_right (funa->funr->1 +r) list 0;;
val length : 'a list -> int = <fun>
length [5; 4; 3; 2];;
-rint=4

1/30/24 72

Forward Recursion: Examples

let rec double_up list =
match list

with [] -

| (X :: x5)

val double

Base Case

let double_up =

fold_right (fun x -> fun r -> k= x:{f) Iist
[Operator] [Recursive resul] |Base Case|

double_up ["a";"b"];;

- : String Iist - ["a"; "a"; "b“; "b"]

->{(x :: x :z||double_up xs);;
: 'alist ->{"a list = <funx_
| Operator || Recursive Call|

1/30/24 73

*

= let rec multList_fr list =

match list
with []-> 1
| (X::xs) -> let r = (multList_fr ns) in

(x*1)

1/30/24 74

‘ Folding Recursion

= multList folds to the right
= Same as:

let multList list =
List.fold_right
(fun x -> fun p -> x * p)
list 1;;
val multList : int list -> int = <fun>
multList [2;4;6];;
-:int =48

1/30/24 75

‘ Terminology

= Available: A function call that can be
executed by the current expression

= The fastest way to be unavailable is to be
guarded by an abstraction (anonymous

function, lambda lifted).

. ifEh X ‘thenelse

= if [(h x)| then (fun x -> f x) else[(g (x + x))
| 1)

Not available

1/30/24 89

‘ Terminology

= Tail Position: A subexpression s of
expressions e, which is available and such
that if evaluated, will be taken as the value
of e (last thing done in this expression)
w if (x>3) then|x + 2]else|x - 4 |
«letx=5in

= Tail Call: A function call that occurs in tail
position

« if (h x) then[f x]else

1/30/24 90

i Tail Recursion

= A recursive program is tail recursive if all
recursive calls are tail calls

= Tail recursive programs may be optimized to
be implemented as loops, thus removing the
function call overhead for the recursive calls

= Tail recursion generally requires extra
“accumulator” arguments to pass partial
results
= May require an auxiliary function

1/30/24 91

‘ Tail Recursion - length

= How can we write length with tail recursion?
let length list =
let rec length_aux list acc_length =
match list
with [] -> acc_length
| (x::xs) ->
length_aux xs (1 + acc_length)
in length_aux list 0

1/30/24 92

i Your turn: num_neg — tail recursive

let num_neg list =

1/30/24 95

‘ Your turn: num_neg — tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =

in num_neg_aux ? ?

1/30/24 96

‘ Your turn: num_neg — tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =
match list with [] ->
| (X ::xs)->

in num_neg_aux ? ?

1/30/24 97

‘ Your turn: num_neg — tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =
match list with [] -> curr_neg
| (X ::xs)->

in num_neg_aux ? ?

1/30/24 98

‘ Your turn: num_neg — tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =
match list with [] -> curr_neg
| (X ::xs)->
num_neg_aux xs ?

in num_neg_aux ? ?

1/30/24 99

‘ Your turn: num_neg — tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =
match list with [] -> curr_neg
| (x :: xs) ->
num_neg_aux xs
(if x < 0 then 1 + curr_neg
else curr_neg)
in num_neg_aux ? ?

1/30/24 100

‘ Your turn: num_neg — tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =
match list with [] -> curr_neg
| (x ::xs)->
num_neg_aux Xs
(if x < 0 then 1 + curr_neg
else curr_neg)
in num_neg_aux list ?

1/30/24 101

‘ Your turn: num_neg — tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =
match list with [] -> curr_neg
| (X ::xs)->
num_neg_aux Xs
(if x < 0 then 1 + curr_neg
else curr_neg)
in num_neg_aux list 0

1/30/24 102

*

let num_neg list =
List.fold_left
(fun curr_neg -> (fun x ->
(if x < 0 then 1 + curr_neg else curr_neq)
)

)
0

list

2/1/24 103

‘ Folding

let rec fold_left f a list = match list
with []-> a | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left: ('a->'b->'a)->'a->'blist->"'a=
<fun>

fold_left f a [xy; X5;...;%,] = f(...(f (f 2 X{) X3)...)X,

let rec fold_right f list b = match list
with []-> b | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ("a->'b->'b)->'alist->'b->'b =
<fun>

fold_right f [Xy; X3;...;%,] b = f x3(f x5 (...(f x, b)...))

1/30/24 123

‘ Folding

= Can replace recursion by fold_right in any
forward primitive recursive definition
= Primitive recursive means it only recurses on
immediate subcomponents of recursive data
structure
= Can replace recursion by fold_left in any tail
primitive recursive definition

1/30/24 124

‘ Mapping Recursion

let rec map f list =
match list
with [1-> []
| (h::xt) -> (fh):: (map ft);;
val map : ('a->"'b) -> 'alist -> 'b list = <fun>
map plus_two fib5;;
- rintlist = [10; 7; 5; 4; 3; 3]
map (fun x -> x - 1) fib6;;
vintlist =[12; 7; 4; 2; 1; 0; 0]

1/30/24 125

‘ Map is forward recursive

let rec map f list =
match list

with [] -

8) [oy
val map-: (‘a~<> 'b) -> 'alist -> 'b list = <fun>
let map f list =

List.fold_right (fun h -> funr-> (fh) :: r)
list [1;;
val map : ('a->"'b) -> 'alist -> 'b list = <fun>

1/30/24 126

‘ Mapping Recursion

= Can use the higher-order recursive map
function instead of direct recursion

let doubleList list =
List.map (fun x -> 2 * x) list;;
val doublelList : int list -> int list = <fun>
doublelList [2;3;4];;
- rint list = [4; 6; 8]

1/30/24 127

‘ Mapping Recursion

= Can use the higher-order recursive map
function instead of direct recursion

let doublelList list =
List.map (fun x -> 2 * x) list;;
val doublelList : int list -> int list = <fun>
doublelList [2;3;4];;
- rint list = [4; 6; 8]

= Same function, but no explicit recursion

1/30/24 128

