Programming Languages and
Compilers (CS 421)

IElsa L Gunter -
2112 SC, UIUC

https://courses.engr.illinois.edu/cs421/fa2023/CS421D

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

2/2/24 1

:‘ Functions with more than one argument

let add_threexyz=x+y + z;;
val add_three : int -> int -> int -> int = <fun>
let t = add_three 6 3 2;;
valt:int =11
let add_three =
funx-> (funy-> (funz->x +vy + 2));;
val add_three : int -> int -> int -> int = <fun>

|Again, first syntactic sugar for second |

2/2/24 3

;‘ Functions with more than one argument

letadd_threexyz=x+y+ z;;
val add_three : int -> int -> int -> int = <fun>
= What is the value of add_three?

» Let p,aq_three DE the environment before the
declaration

= Remember:

let add_three =

funx-> (funy-> (funz->x+y+2);;

Value: <x ->funy -> (funz-> X + Y + Z), padd_three >

2/2/24 4

‘ Partial application of functions

let add_threexyz=x+vy + z;;

let h = add_three 5 4;;
val h :int -> int = <fun>
#h 3;;

-rint=12

#h7;

-:int=16

2/2/24 5

‘ Partial application of functions

let add_threexyz=x+y + z;;

let h = add_three 5 4;;

val h :int -> int = <fun>

#h3;;

-rint=12

#h7;

- 1int =16

|- Partial application also called sectioning |

2/2/24 6

‘ Functions as arguments

let thrice f x = f (f (f x));;

val thrice : ('a -> 'a) -> (‘a -> 'a) = <fun>
let g = thrice plus_two;;

val g : int -> int = <fun>

#94;;

-:int =10

thrice (fun s -> "Hi! " ~ s) "Good-bye!";;
- : string = "Hi! Hi! Hi! Good-bye!"

2/2/24 7

‘ Tuples as Values

/] p7 ={c— 4, test —» 3.7, 13155
a—>1,b-5} C:S;'”"

let s = (5,"hi",3.2);;

val s : int * string * float = (5, "hi", 3.2)

// Pg = {S - (51 "hi"I 32)1
Cc— 4, test —» 3.7,
a—>1,b->5}

5
test > 3.7
c>4

s = (5, "'hi", 3.2)

2/2/24 10

‘ Pattern Matching with Tuples

/ ps ={s— (5, "hi", 3.2), a>1 °2% 537
Cc—> 4, test > 3.7,
a—>1,b->5}

let =s;; (*(a,b,c) is a pattern *

vala:int=5

val b : string = "hi"

val ¢ : float = 3.2

let x = 2, 9.3;; (* tuples don't require pare
Ocaml *) 235 b>h" test>37

. s -E)’ (5,hi", 3.2) c> 32
val x : int * float = (2, 9.3) x> (2,9.3)
2/2/24 11

c>4

s (5,"hi", 3.2)

a5

> “hi”
test 2 3.7

s (5,"hi",3.2) © = 3.

‘ Nested Tuples

(*Tuples can be nested *)

let d = ((1,4,62),("bye",15),73.95);;

val d : (int * int * int) * (string * int) * float =
((1, 4, 62), ("bye", 15), 73.95)

(*Patterns can be nested *)

let (p,(st,_),_) = d;; (* _ matches all, binds nothing
*)

valp:int*int *int = (1, 4, 62)

val st : string = "bye"

Functions on tuples

let plus_pair (n,m) = n + m;;

val plus_pair : int * int -> int = <fun>
plus_pair (3,4);;

-1int=7

let double x = (x,x);;

val double : 'a -> 'a * 'a = <fun>

double 3;;

-rint*int = (3, 3)

double "hi";;

- : string * string = ("hi", "hi")

2/2/24 12 2/2/24 13
‘ Curried vs Uncurried ‘ Curried vs Uncurried
= Recall # add_triple (6,3,2);;

val add_three : int -> int -> int -> int = <fun>
= How does it differ from

let add_triple (u,v,w) = u+v + w;;

val add_triple : int * int * int -> int = <fun>

» add_three is curried:
» add_triple is uncurried

2/2/24 14

-rint=11
add_triple 5 4;;
Characters 0-10:
add_triple 5 4;;
NANNNNNNNNAN
This function is applied to too many arguments,
maybe you forgot a *;'
fun x -> add_triple (5,4,x);;
pint -> int = <fun>

2/2/24 15

‘ Match Expressions

let triple_to_pair triple =

triple *Each clause: pattern on
left, expression on right
0, %,y) > (X, ¥)

% 0,y) > (x,y)
(X, ¥,) ->(x,y);; |-Use first matching clause

*Each x, y has scope of
only its clause

val triple_to_pair : int * int * int -> int * int =
<fun>

2/2/24 16

‘ Save the Environment!

= A closureis a pair of an environment and an
association of a pattern (e.g. (v1,...,vn)
giving the input variables) with an
expression (the function body), written:

< (vi,...,vn) —> exp, p >

= Where p is the environment in effect when
the function is defined (for a simple
function)

2/2/24 18

‘ Closure for plus_pair

» Assume pp,s pair Was the environment just
before plus_pair defined

= Closure for fun (n,m) -> n + m:
<(n,m) > n+m, Pplus_pair™
= Environment just after plus_pair defined:

{plus_pair — <(n,m) - n + m, ppis_pair >+

* Pplus_pair

2/2/24 19

‘ Evaluating declarations

= Evaluation uses an environment p

= To evaluate a (simple) declaration let x = e
= Evaluate expression e in p to value v
= Update pwithx > vi x> v} +p

2/2/24 20

‘ Evaluating declarations

= Evaluation uses an environment p

= To evaluate a (simple) declaration let x = e
= Evaluate expression e in p to value v
= Update p withxv: {x > v} +p

= Update: p,+ p, has all the bindings in p; and
all those in p, that are not rebound in p,

{xX—2,y—>3,a-"hi"y+{y > 100,b - 6}
={Xx—>2,y—>3,a-"hi", b6}

2/2/24 21

‘ Evaluating expressions in OCaml

= Evaluation uses an environment p

= A constant evaluates to itself, including
primitive operators like + and =

2/2/24 22

‘ Evaluating expressions in OCaml

= Evaluation uses an environment p

= A constant evaluates to itself, including
primitive operators like + and =

= To evaluate a variable, look it up in p: p(v)

2/2/24 23

‘ Evaluating expressions in OCaml

= Evaluation uses an environment p

= A constant evaluates to itself, including
primitive operators like + and =

= To evaluate a variable, look it up in p: p(v)
= To evaluate a tuple (ey,...,€,),

= Evaluate each g to v, right to left for Ocaml

= Then make value (vy,...,v,)

2/2/24 24

‘ Evaluating expressions in OCaml

= To evaluate uses of +, -, etc, eval args,
then do operation

2/2/24 25

‘ Evaluating expressions in OCaml

= To evaluate uses of +, -, etc, eval args,
then do operation
= Function expression evaluates to its closure

2/2/24 26

‘ Evaluating expressions in OCaml

= To evaluate uses of +, -, etc, eval args,
then do operation
= Function expression evaluates to its closure

= To evaluate a local dec: let x = el in e2
= Eval el to v, then eval €2 using {x — v} + p

2/2/24 27

‘ Evaluating expressions in OCaml

= To evaluate uses of +, -, etc, eval args

(right to left for Ocaml), then do operation
= Function expression evaluates to its closure
= To evaluate a local dec: let x = el in e2

= Eval el to v, then eval €2 using {x — v} + p
= To evaluate a conditional expression:

if b then el else e2

= Evaluate b to a value v

= If v is True, evaluate el

= If v is False, evaluate e2

2/2/24 28

Evaluation of Application with Closures

= Given application expression f e
= In Ocaml, evaluate e to value v

= In environment p, evaluate left term to closure,
C = <(Xqy,..,X,) > b, p™>

= (Xy,...,X,) variables in (first) argument
= v must have form (vy,...,v,)

= Update the environment p’ to
p”" = {Xy > V4o Xy OVt p’

= Evaluate body b in environment p”

2/2/24 29

‘ Recursive Functions

let rec factorial n =
if n = 0 then 1 else n * factorial (n - 1);;
val factorial : int -> int = <fun>
factorial 5;;
-:int =120
(* rec is needed for recursive function
declarations *)

2/2/24 75

‘ Recursion Example

Compute n2 recursively using:
n=0R2*n-1)+ (n-1)?
let rec nthsg n = (* rec for recursion *)

match n (* pattern matching for cases *)
with 0 -> 0 (* base case *)
|n->(2*n-1) (* recursive case *)

+ nthsq (n -1);; (* recursive call *)
val nthsq : int -> int = <fun>
nthsq 3;;
- 1int=9

Structure of recursion similar to inductive proof

2/2/24 76

‘ Recursion and Induction

let rec nthsq n = match n with 0 -> 0
[n->(2*n-1)+nthsq (n-1);;

= Base case is the last case; it stops the computation

= Recursive call must be to arguments that are
somehow smaller - must progress to base case

= if or match must contain base case
= Failure of these may cause failure of termination

2/2/24 77

‘ Lists

= List can take one of two forms:
= Empty list, written []
= Non-empty list, written x :: xs
= X is head element, xs is tail list, :: called
“cons”

= Syntactic sugar: [x] == x :: []
s [X1; x2; .o xn]==x1:x2:..axn[]

2/2/24 78

‘ Lists

let fib5 = [8;5;3;2;1;1];;

val fib5 :intlist =[8; 5; 3; 2; 1; 1]

let fib6 = 13 :: fib5;;

val fib6 :intlist = [13; 8; 5; 3; 2; 1; 1]

(8::5::3::2::1::1::[]) = fib5;;

- : bool = true

fib5 @ fib6;;

- i]nt list=1[8;5;3;2;1;,1;13;8;5; 3; 2; 1;
1

2/2/24 79

‘ Lists are Homogeneous

let bad_list = [1; 3.2; 7];;
Characters 19-22:
let bad_list = [1; 3.2; 7];;

NANN

This expression has type float but is here
used with type int

2/2/24 80

‘ Question

= Which one of these lists is invalid?

1. [2; 3; 4; 6]

2. [2,3;4,5;6,7]

3. [(2.3,4); (3.2,5); (6,7.2)]

4. [[“hi”; “there”]; [“wahcha”]; [1; [“doin™]]
2/2/24 81

‘ Answer

= Which one of these lists is invalid?

[2; 3; 4; 6]

[2,3; 4,5; 6,7]

[(2.3,4); (3.2,5); (6,7.2)]

[[“hi”; “there”]; [“wahcha”]; [1; [“doin”]]

A

= 3 s invalid because of last pair

2/2/24 82

‘ Functions Over Lists

let rec double_up list =
match list
with []->[] (* pattern before ->,
expression after *)
| (x ::xs)->(x::x::double_up xs);;
val double_up : 'a list -> 'a list = <fun>
let fib5_2 = double_up fib5;;
val fib5_2 :intlist =[8; 8; 5; 5; 3; 3; 2; 2; 1;
1;1; 1]

2/2/24 83

‘ Functions Over Lists

let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"]
let rec poor_rev list =

match list

with []-> []

| (X::xs) -> poor_rev xs @ [x];;

val poor_rev : 'a list -> 'a list = <fun>
poor_rev silly;;
- : string list = ["there"; "there"; "hi"; "hi"]

2/2/24 84

‘ Structural Recursion

= Functions on recursive datatypes (eg lists)
tend to be recursive

= Recursion over recursive datatypes generally
by structural recursion

= Recursive calls made to components of structure
of the same recursive type

= Base cases of recursive types stop the recursion
of the function

2/2/24 86

‘ Question: Length of list

= Problem: write code for the length of the list
= How to start?
let rec length list =

2/2/24 87

‘ Question: Length of list

= Problem: write code for the length of the list
= How to start?

let rec length list =
match list with

2/2/24 88

‘ Question: Length of list

= Problem: write code for the length of the list
= What patterns should we match against?

let rec length list =
match list with

2/2/24 89

‘ Question: Length of list

= Problem: write code for the length of the list
= What patterns should we match against?
let rec length list =
match list with [] ->
| (@:: bs)->

2/2/24 90

‘ Question: Length of list

= Problem: write code for the length of the list
= What result do we give when list is empty?
let rec length list =
match list with [] -> 0
| (@:: bs)->

2/2/24 91

‘ Question: Length of list

= Problem: write code for the length of the list
= What result do we give when list is not empty?

let rec length list =
match list with []-> 0
| (@ :: bs)->

2/2/24 92

‘ Question: Length of list

= Problem: write code for the length of the list
= What result do we give when list is not empty?

let rec length list =
match list with []-> 0
| (@::bs)->1+ length bs

2/2/24 93

‘ Structural Recursion : List Example

let rec length list = match list
with []-> 0 (* Nil case *)
| a:: bs-> 1+ length bs;; (* Cons case *)
val length : 'a list -> int = <fun>
length [5; 4; 3; 2];;
-:1int=4

= Nil case [] is base case
= Cons case recurses on component list bs

2/2/24 94

‘ Same Length

= How can we efficiently answer if two lists
have the same length?

2/2/24 95

‘ Same Length

= How can we efficiently answer if two lists
have the same length?

let rec same_length list1 list2 =
match listl with [] ->
(match list2 with [] -> true
| (y::ys) -> false)
| (x::xs) ->
(match list2 with [] -> false
| (y::ys) -> same_length xs ys)

2/2/24 96

‘ Your turn: doubleList : int list -> int list

= Write a function that takes a list of int and
returns a list of the same length, where each
element has been multiplied by 2

let rec doubleList list =

2/2/24 98

‘ Your turn: doubleList : int list -> int list

= Write a function that takes a list of int and
returns a list of the same length, where each
element has been multiplied by 2

let rec doubleList list =
match list
with [] ->[]
| x::xs-> (2 *x):: doubleList xs

2/2/24 99

:‘ Your turn: doubleList : int list -> int list

= Write a function that takes a list of int and
returns a list of the same length, where each
element has been multiplied by 2

let rec doubleList list =
match list

| :: Xs[-> (2 * x) :| doubleList xs
. A

2/2/24 100

‘ Higher-Order Functions Over Lists

let rec map f list =
match list
with []-> []
| (h::t) -> (fh) :: (map ft);;
val map : ('a -> 'b) -> "a list -> 'b list = <fun>
map plus_two fib5;;
- rintlist = [10; 7; 5; 4; 3; 3]
map (fun x -> x - 1) fib6;;
vintlist =[12; 7; 4; 2; 1; 0; 0]

2/2/24 101

‘ Higher-Order Functions Over Lists

let rec map f list =

match list

with [-

| :: ->[(Fh)l::[(map fFo:
val map— (‘a<> 'b) -> 'alist -> 'b list = <fun>
map plus_two fib5;;
-rintlist = [10; 7; 5; 4; 3; 3]
map (fun x -> x - 1) fib6;;
vintlist = [12; 7; 4; 2; 1; 0; 0]

2/2/24 102

‘ Mapping Recursion

= Can use the higher-order recursive map
function instead of direct recursion

let doubleList list =
List.map (fun x -> 2 * x) list;;
val doublelList : int list -> int list = <fun>
doublelList [2;3;4];;
- rintlist = [4; 6; 8]

2/2/24 103

‘ Mapping Recursion

= Can use the higher-order recursive map
function instead of direct recursion

let doubleList list =
List.map (fun x -> 2 * x) list;;
val doublelList : int list -> int list = <fun>
doubleList [2;3;4];;
- rint list = [4; 6; 8]

= Same function, but no explicit recursion

2/2/24 104

‘ Folding Recursion

= Another common form “folds” an operation
over the elements of the structure

let rec multList list = match list
with[]->1
| X::xs -> x * multList xs;;
val multList : int list -> int = <fun>
multList [2;4;6];;
-:int =48

= Computes (2 * (4 * (6 * 1)))

2/2/24 105

‘ Folding Recursion : Length Example

let rec length list = match list
with [T-> 0 (* Nil case *)
| a::bs->1+ length bs;; (* Cons case *)
val length : 'a list -> int = <fun>
length [5; 4; 3; 21;;
-:int=4
= Nil case [] is base case, 0 is the base value
= Cons case recurses on component list bs
= What do multList and length have in common?

2/2/24 106

