Programming Languages and
Compilers (CS 421)

Elsa L Gunter

2112 SC, UIUC
https.//courses.engr.illinois.edu/cs421/sp2024

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

1/15/24

https://courses.engr.illinois.edu/cs421/sp2024

i Programming Languages & Compilers

Three Main Topics of the Course

New
Programming
Paradigm

Language
Translation

Language
Semantics

1/15/24 2

i Programming Languages & Compilers

Order of Evaluation

Language L
MINg T —Hansiaben— | Semantics

C

Specification to Implementation

1/15/24 3

i Programming Languages & Compilers

| : New Programming Paradigm

Functional |[Environments|/Patterns of || Continuation

Programming and Recursion Passing

Closures Style

1/15/24 4

Programmmg Languages & Compilers

Order of Evaluation

Functionrs

Enwronment Patterns of satinuation
Programmlng |

Closures

Specification to Implementation

1/15/24 5

i Programming Languages & Compilers

Il : Language Translation

Lexing and

Interpretation
Parsing

1/15/24 6

i Programming Languages & Compilers

Order of Evaluation

Specification to Implementation

1/15/24 8

i Programming Languages & Compilers

lll : Language Semantics

Lambda
Calculus

Axiomatic
Semantics

Operational

Semantics

1/15/24 9

i Programming Languages & Compilers

Order of Evaluation

Specification to Implementation

1/15/24 10

i Contact Information - Elsa L Gunter

= Office: 2112 SC

s Office hours:

= 1BD
« Can attend in zoom

= Also by appointment
= Email: eqgunter@illinois.edu

1/15/24 13

mailto:egunter@illinois.edu

Course TAs

Aruhan Purvansh Bal Deeya Bansal Athena Fung

Yerng Li James Luo Siheng Pan Riya Patel

Mike Qin Havish Rani Alan Yao

1/15/24 14

i Course Website

https.//courses.engr.illinois.edu/cs421/sp2024

Main page - summary of news items
Policy - rules governing course
Lectures - syllabus and slides

MPs - information about assignments

Exams — Syllabi and review material for Midterms
and finals

Unit Projects - for 4 credit students
Resources - tools and helpful info
FAQ

1/15/24 15

https://courses.engr.illinois.edu/cs421/sp2024

& Some Course References

= No required textbook
= Some suggested references

modern

: compiler
implementation
% in ML

Compilers

. /ESSENTIALS
OF PROGRAMMING
:\ N _\\LA N G uA}G E S z

1/15/24

i Some Course References

No required textbook.
Pictures of the books on previous slide

Essentials of Programming Languages (2nd Edition)
by Daniel P. Friedman, Mitchell Wand and
Christopher T. Haynes, MIT Press 2001.

Compilers: Principles, Techniques, and Tools, (also
known as "The Dragon Book"); by Aho, Sethi, and
Ullman. Published by Addison-Wesley. ISBN: O-
201-10088-6.

Modern Compiler Implementation in ML by Andrew
W. Appel, Cambridge University Press 1998

Additional ones for Ocaml given separately

1/15/24 17

i Course Grading

= Assignments 10%
= Web Assignments (WA) (~3-6%)
= MPs (in Ocaml) (~4-7%)
=« All WAs and MPs Submitted by PrairieLearn
« Late submission penalty:
score capped at 80% of total

1/15/24

18

i Course Grading

= Five quizzes - 10% (2% each)
= In class, BYOD

« Tentatively Jan 23, Feb 6, Feb 27, Mar 26, Apr
23

s 3 Midterms - 15% each
= Feb 12-14, Mar 6-8, Apr 11-13

« BE AVAILABLE FOR THESE DATES!
= Final 35%
= Tuesday May 7, 7:00pm — 10:00pm
= Percentages based on 3 cr, are approximate

1/15/24 19

i Course Assingments — WA & MP

= You may discuss assignments and their solutions with
others

= You may work in groups, but you must list members
with whom you worked if you share solutions or
detailed solution outlines

= Each student must write up and turn in their
own solution separately

= You may look at examples from class and other similar
examples from any source — cite appropriately

= Note: University policy on plagiarism still holds - cite
yolur sources if you are not the sole author of your
solution

= Do not have to cite course notes or course staff

1/15/24 20

i OCAML

= Locally:

= Will use ocaml inside VSCode inside PrairieLearn
problems this semester

= Globally:
= Main OCAML home: http://ocaml.org

= T0 install OCAML on your computer see:
http://ocaml.org/docs/install.html

= T0 try on the web: https://try.ocamlipro.com
= More notes on this later

1/15/24 21

http://ocaml.org
http://ocaml.org/docs/install.html
https://try.ocamlpro.com/

i References for OCam

= Supplemental texts (not required):

= The Objective Caml system release 4.05, by
Xavier Leroy, online manual

= Introduction to the Objective Caml
Programming Language, by Jason Hickey

= Developing Applications With Objective
Caml, by Emmanuel Chailloux, Pascal
Manoury, and Bruno Pagano, on O’ Reilly

= Available online from course resources

1/15/24 22

i Features of OCAML

Higher order applicative language
Call-by-value parameter passing
Modern syntax

Parametric polymorphism
= Aka structural polymorphism

Automatic garbage collection
User-defined algebraic data types

1/15/24

25

i Session in OCAML

% ocaml
Objective Caml version 4.07.1

(* Read-eval-print loop; expressions and
declarations

2+ 3 (* Expression *)
- 1int=5
#3<2:;
- : bool = false

1/15/24

27

i Declarations; Sequencing of Declarations

#letx =2+ 3;; (* declaration *)
val x:int=5
lettest =3 < 2;;

val test : bool = false

#leta=1letb =a + 4;; (* Sequence of dec
*)

vala:int=1

valb:int=5

1/15/24 28

i Functions

let plus_ twon=n+ 2;;

val plus_two : int -> int = <fun>
plus_two 17;;

-:int =19

1/15/24

29

i Functions

let plus_two nI =n+2;;

/

plus_two 17;;
-:int =19

1/15/24

31

i Environments

s Environments record what value is associated with
a given identifier

= Central to the semantics and implementation of a
language

= Notation

p = {name; — value;, name,— value,, ...}
Using set notation, but describes a partial function

= Often stored as list, or stack
= 10 find value start from left and take first match

1/15/24 44

i Environments

X = 3 name = “Steve”

vy D> 17 region = (5.4, 3.7)

_ id & {Name = “Paul’, \
b = true Age = 23,
SSN = 999888777}

—_—

1/15/24 45

i Global Variable Creation

#2+ 3;; (* Expression *)

// doesn’ t affect the environment

let test = 3 < 2;; (* Declaration *)
val test : bool = false

/] p; = {test — false}

#leta=1letb =a + 4;; (* Seq of dec *)
/| p» ={b —> 5, a— 1, test - false}

1/15/24 46

i Environments

test = true

b=>5

1/15/24

47

i New Bindings Hide Old

/| p> ={b—>5,a—> 1, test — false}
let test = 3.7;;

s What is the environment after this
declaration?

1/15/24

48

i New Bindings Hide Old

/| p> ={b—>5,a—> 1, test — false}
let test = 3.7;;

s What is the environment after this
declaration?

[/ p3={test > 3.7, a—>1,b— 5}

1/15/24

49

i Environments

1/15/24

50

Now it's your turn

You should be able to do WA1-IC
Problem 1, parts (* 1 *) - (* 3 *)

1/15/24

51

i Local Variable Creation

/[p3={test > 3.7, a—>1,b—> 5@

#letb=5%*4
/] p4 ={b — 20,

test = 3.7

[/ ps = p3={test - 3.7, a—>1,b—>5} |
b;; 5 test = 3.7

b=>5

-:int=5

1/15/24 53

i Local let binding

/] ps =p3={test > 3.7, a—>1,b
letc =

letb =
[l pe =1b—> 2} + p;
// ={b - 2, test - 3.7, a > 1}
nb*b;;
valc:int=4
/| p={c—>4,test > 3.7,a—>1,b— 5}
b;;
-:int=5

test = 3.7
b=>5

1/15/24 54

i Local let binding

/] ps=p3={test > 3.7, a—>1,b
letc =

letb =
[l pe =1b—> 2} + p;
// ={b - 2, test 37—
in b ¥ b:
valc:int=4
/| p={c—>4,test >3.7,a—>1,b—>5}
b;;
-:int=5

1 test = 3.7

1/15/24 55

i Local let binding

a 1 test = 3.7

/] ps=p3={test > 3.7, a—>1,b . .
let c = /
|et b = ‘ii‘l\

51 test>37
// p6={b—)2}+ ' @
// ={b - 2, te e 1}

in b b; L3 test>37
valc:int =4 %34 bd>5
/| p={c—>4,test > 3.7, a—>1,b—> 5}
b;;
-:int=5

1/15/24 56

i Functions

let plus_ twon=n+ 2;;

val plus_two : int -> int = <fun>
plus_two 17;;

-:int =19

1/15/24

57

i Functions

let plus_two nI =n+2;;

/

plus_two 17;;
-:int =19

1/15/24

58

i Nameless Functions (aka Lambda Terms)

funn->n+ 2;;
(funn->n+2)17;;
-:int=1

1/15/24 59

i Functions

let plus_ twon=n+ 2;;

val plus_two : int -> int = <fun>

plus_two 17;;

-1 int =19

let plus_two = n->n+2;;

val plus_two : int -> int = <fun>

plus_two 14;;

- int =16

| First definition syntactic sugar for second|

1/15/24

61

i Using a nameless function

(funx->x*3)5;; (* An application *)

-:int =15

((funy->y +.2.0), (funz->z*3));;
(* As data *)

- . (float -> float) * (int -> int) = (<fun>,
<fun>)

Note: in fun v -> exp(v), scope of variable is
only the body exp(v)

1/15/24 62

i Values fixed at declaration time

#letx = 12:; >
val x :int = 12

let plus_x yf=\y + X;:
val plus_x : int -> int = <fun>
plus_x 3;;

What is the result?

1/15/24

64

i Values fixed at declaration time

#letx = 12;;

val X 1 int = 12

#letplus Xy =vy + x;;

val plus_x : int -> int = <fun>
plus_x 3;;

-:int =15

1/15/24

65

i Values fixed at declaration time

#let x =7;; (* New declaration, not an
update *)
val X :int = 7

plus_x 3;;

What is the result this time?

1/15/24

66

i Values fixed at declaration time

#letx =7;; (* New declaration, nat an
update *)

val X : int =7

8
' plus_xJ3;;

What is the result this time?

1/15/24

67

i Values fixed at declaration time

#let x =7;; (* New declaration, not an
update *)
val X :int = 7

plus_x 3;;
-:int =15

1/15/24

68

i Question

s Observation: Functions are first-class values
in this language

= Question: What value does the environment
record for a function variable?

s Answer: a closure

1/15/24 69

i Save the Environment!

= A closureis a pair of an environment and an
association of a formal parameter (the input
variables)* with an expression (the function
body), written:

f— < (vl,...,vn) > exp, pr >

= Where ps is the environment in effect when f
is defined (if f is a simple function)

* Will come back to the “formal parameter”

1/15/24 70

i Closure for plus_x

= When plus_x was defined, had environment:

pplus_x — {, X — 12, }
= Recall: let plus_xy =y + X

is really let plus_ x =funy ->y + x
= Closure for funy -> vy + x:
<y —>YVY + X, Pplus_x >
= Environment just after plus_x defined:

{plus_x — <y =¥ + X, pplus_x >+ + Pplus_x

1/15/24

/1

Now it's your turn

You should be able complete ACT1

1/15/24 72

i Functions with more than one argument

let add threexyz=x+vy + z;;
val add three : int -> int -> int -> int = <fun>
let t = add_three 6 3 2;;
valt:int=11
let add_three =
funx-> (funy->(funz->x+vy+2);;
val add three : int -> int -> int -> int = <fun>

| Again, first syntactic sugar for second |

1/15/24 77

i Functions with more than one argument

let add_threexyz=x+vy + z;;
val add three : int -> int -> int -> int = <fun>
= What is the value of add_three?

s Let pagd three D€ the environment before the
declaration

= Remember:

let add_three =

funx-> (funy->(funz->x+vy+2));;

Value: <x ->funy -> (funz-> X + Yy + Z), padd three >

1/15/24 78

i Partial application of functions

let add _threexyz=x+vy + z;;

let h = add_three 5 4;;
val h : int -> int = <fun>
#h 3;;

-:int =12

#h7;;

-1 int = 16

1/15/24

79

i Partial application of functions

let add _threexyz=x+vy + z;;

let h = add_three 5 4;;

val h :int -> int = <fun>

#h3;;

-int = 12

#h7;

- 1int =16

- Partial application also called sectioning |

1/15/24 80

i Functions as arguments

let thrice f x = f (f (f x));;

val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
let g = thrice plus_two;;

val g : int -> int = <fun>

#94;;

- int =10

thrice (fun s -> "Hil " ~ s) "Good-bye!";;
- . string = "Hi! Hi! Hi! Good-bye!"

1/15/24

81

i Tuples as Values

/] p7 ={c — 4, test > 3.7, b5
a—>1 b-5} i:s;')?"
let s = (5,"hi",3.2);;

val s : int * string * float = (5, "hi", 3.2)

/[pg =1{s — (5 "hi", 3.2),
c > 4, test > 3.7,
a—>1,b—5}

b5
a=>1 test & 3.7
c=2>4

s = (5, ’hi’, 3.2)

1/15/24 83

i Pattern Matching with Tuples

/ P8 — {S — (51 "hi", 32)/ a>1 P> test & 3.7
Cc — 4, test —» 3.7, cD 4

a—>1b—-5)
let =s;: (* (a,b,c) is a pattern *
vala:int=>5 b > “hi"
_] test = 3.7
val b : string = "hi"
val c : float = 3.2
let x = 2, 9.3;; (* tuples don't requi

Ocaml *) ~ 35 b test>37

_ s = (5, ’hi", 3.2) ¢ > 3.2
val x : int * float = (2, 9.3) x> (2,9.3)
1/15/24 84

s = (5, ’hi’, 3.2)

s (5,°hi",3.2) C> 32

i Nested Tuples

(*Tuples can be nested *)

letd = ((1,4,62),("bye",15),73.95);;

val d : (int * int * int) * (string * int) * float =
((1, 4, 62), ("bye", 15), 73.95)

(*Patterns can be nested *)

let (p,(st,_),_) = d;; (* _ matches all, binds nothing
*)

val p :int *int * int = (1, 4, 62)

val st : string = "bye"

1/15/24 86

i Functions on tuples

let plus_pair (n,m) = n + m;;

val plus_pair : int * int -> int = <fun>
plus_pair (3,4);;

-:int=7

let double x = (x,Xx);;

val double : 'a -> 'a * 'a = <fun>

double 3:;

-rint*int = (3, 3)

double "hi":;

- 1 string * string = ("hi", "hi")

1/15/24

87

i Match Expressions

let triple_to_pair triple =

triple *Each clause: pattern on
left, expression on right
(0, X, ¥) -> (X,)
*Each x, y has scope of
(x, 0, y) (X, Y) only its clause
(X, ¥,)->(X,y);; |+Use first matching clause

val triple_to_pair : int * int * int -> int * int =
<fun>

1/15/24 88

i Closure for plus_pair

= ASSUME pyus_pair WS the environment just
before plus_pair defined

= Closure for plus_pair:
<(h,m) > n+m, Pplus_pair”™
= Environment just after plus_pair defined:

{plus_pair —» <(n,m) - n + m, pyys pair >

T Pplus_pair

1/15/24 90

i Save the Environment!

= A closureis a pair of an environment and an
association of a pattern (e.g. (v1,...,vn)
giving the input variables) with an
expression (the function body), written:

< (vl,...,vn) > exp, p >

= Where p is the environment in effect when
the function is defined (for a simple
function)

1/15/24 91

i Evaluating declarations

= Evaluation uses an environment p

= T0 evaluate a (simple) declaration let x = e
=« Evaluate expression e in p to value v
« Update p with xv: {(x > v} +p

= Update: p;+ p, has all the bindings in p; and
all those in p, that are not rebound in p;

{X—>2,y—>3,a-"hi"} +{y > 100, b - 6}
={X—>2,Yy—>3,a— "hi",b > 6}

1/15/24 92

i Evaluating expressions in OCaml

= Evaluation uses an environment p

= A constant evaluates to itself, including
primitive operators like + and =

= TO evaluate a variable, look it up in p: p(v)
= T0 evaluate a tuple (eq,...,€,),

» Evaluate each e; to v;, right to left for Ocaml

= Then make value (v4,...,v,)

1/15/24 93

i Evaluating expressions in OCaml

= To evaluate uses of +, _, etc, eval args,
then do operation

= Function expression evaluates to its closure

m 10 evaluate a local dec: let x = el in e2
« Eval el to v, then eval e2 using {x —» v} + p

= 10 evaluate a conditional expression:

if b then el else e2

=« Evaluate b to a value v
« If vis True, evaluate el
= If v is False, evaluate e2

1/15/24 94

i Evaluation of Application with Closures

= Given application expression f e
s In Ocaml, evaluate e to value v

= In environment p, evaluate left term to closure,
Cc = <(Xy,..,X,) > b, p’>

» (Xq,...,X,) variables in (first) argument
= V must have form (vy,...,v,)

= Update the environment p’ to
P ={Xy = Vyi,ee, Xgo SV ++ p’

= Evaluate body b in environment p”

1/15/24 95

