Programming Languages and
Compilers (CS 421)
IElsa L Gunter

-
2112 SC, UIUC

https://courses.engr.illinois.edu/cs421/sp2024

i

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

1/15/24 1

‘ Programming Languages & Compilers

Three Main Topics of the Course

Language
Semantics

New
Programming
Paradigm

Language
Translation

1/15/24 2

‘ Programming Languages & Compilers

1/15/24 3

‘ Programming Languages & Compilers

| : New Programming Paradigm

Functional |[Environments|Patterns of || Continuation

and Recursion Passing
Closures Style

Programming

1/15/24 4

‘ Programming Languages & Compilers

1/15/24 5

‘ Programming Languages & Compilers

Il : Language Translation

Lexing and Interpretation

Parsing

1/15/24 6

‘ Programming Languages & Compilers

Order of Evaluation

\/\/\/

Specification to Implementation

1/15/24

’ Programming Languages & Compilers

[l : Language Semantics

Lambda
Calculus

Axiomatic
Semantics

Operational

Semantics

1/15/24 9

i Programming Languages & Compilers

Order of Evaluation

/\/\/

/ \

¢ t|onal \\ Lambda /,/' ‘\\ Axiomati

/CS 422\ /(38426\
\\ / N \ CS477/
SpeC|f|cat|on to ImpIementat|on —

1/15/24 10

* Contact Information - Elsa L Gunter

s Office: 2112 SC

= Office hours:

= TBD
= Can attend in zoom
= Also by appointment

= Email: equnter@illinois.edu

1/15/24 13

Course TAs

Aruhan Purvansh Bal Deeya Bansal Athena Fung
Yerong Li James Luo Siheng Pan Riya Patel

2

Mike Qin Havish Rani

Alan Yao
1/15/24 14

Course Website

» https://courses.engr.illinois.edu/cs421/sp2024
= Main page - summary of news items

= Policy - rules governing course

= Lectures - syllabus and slides

= MPs - information about assignments

= Exams — Syllabi and review material for Midterms
and finals

= Unit Projects - for 4 credit students
= Resources - tools and helpful info
« FAQ

1/15/24 15

‘ Some Course References

= No required textbook
= Some suggested references

g ¢

. ESSENTIALS.
OF PROGRAMMING ©
. LANGUAGES

1/15/24 16

‘ Some Course References

= No required textbook.
= Pictures of the books on previous slide

= Essentials of Programming Languages (2nd Edition)
by Daniel P. Friedman, Mitchell Wand and
Christopher T. Haynes, MIT Press 2001.

= Compilers: Principles, Techniques, and Tools, (also
known as "The Dragon Book"); by Aho, Sethi, and
Uliman. Published by Addison-Wesley. ISBN: 0-
201-10088-6.

= Modern Compiler Implementation in ML by Andrew
W. Appel, Cambridge University Press 1998

= Additional ones for Ocaml given separately

1/15/24 17

‘ Course Grading

= Assignments 10%
= Web Assignments (WA) (~3-6%)
= MPs (in Ocaml) (~4-7%)
= All WAs and MPs Submitted by PrairieLearn
= Late submission penalty:
score capped at 80% of total

1/15/24 18

‘ Course Grading

= Five quizzes - 10% (2% each)
= In class, BYOD

= Tentatively Jan 23, Feb 6, Feb 27, Mar 26, Apr
23

= 3 Midterms - 15% each
« Feb 12-14, Mar 6-8, Apr 11-13
= BE AVAILABLE FOR THESE DATES!
= Final 35%
= Tuesday May 7, 7:00pm — 10:00pm
= Percentages based on 3 cr, are approximate

1/15/24 19

‘ Course Assingments — WA & MP

= You may discuss assignments and their solutions with
others
= You may work in groups, but you must list members
with whom you worked if you share solutions or
detailed solution outlines
= Each student must write up and turn in their
own solution separately
= You may look at examples from class and other similar
examples from any source — cite appropriately
= Note: University policy on plagiarism still holds - cite
yolur sources if you are not the sole author of your
solution

= Do not have to cite course notes or course staff

1/15/24 20

‘ OCAML

= Locally:

= Will use ocaml inside VSCode inside PrairieLearn
problems this semester

= Globally:
= Main OCAML home: http://ocaml.org

= To install OCAML on your computer see:
http://ocaml.org/docs/install.html

= To try on the web: https://try.ocamlpro.com
= More notes on this later

1/15/24 21

‘ References for OCaml

= Supplemental texts (not required):

= The Objective Caml system release 4.05, by
Xavier Leroy, online manual

= Introduction to the Objective Caml
Programming Language, by Jason Hickey

= Developing Applications With Objective
Caml, by Emmanuel Chailloux, Pascal
Manoury, and Bruno Pagano, on O’ Reilly
= Available online from course resources

1/15/24 22

‘ Features of OCAML

= Higher order applicative language
= Call-by-value parameter passing
= Modern syntax

= Parametric polymorphism
= Aka structural polymorphism

= Automatic garbage collection
= User-defined algebraic data types

1/15/24 25

‘ Session in OCAML

% ocaml
Objective Caml version 4.07.1

(* Read-eval-print loop; expressions and
declarations

2+3 (* Expression *)

- 1int=5
#3<2;;
- : bool = false

1/15/24 27

;‘ Declarations; Sequencing of Declarations

#letx =2+ 3;; (* declaration *)

valx:int=5

lettest = 3 < 2;;

val test : bool = false

#leta=1letb =a + 4;; (* Sequence of dec
*)

vala:int=1

valb:int=5

1/15/24 28

‘ Functions

let plus_twon =n + 2;;

val plus_two : int -> int = <fun>
plus_two 17;;

-:int=19

1/15/24 29

‘ Functions

let plus_two n =n + 2;;

plus_two 17;;
-:int=19

1/15/24 31

‘ Environments

= Environments record what value is associated with
a given identifier

= Central to the semantics and implementation of a
language

= Notation

p = {name; — value;, name,— value,, ...}
Using set notation, but describes a partial function

= Often stored as list, or stack
= To find value start from left and take first match

1/15/24 44

‘ Environments

name = “Steve”

X=2>3

y>17 region = (5.4, 3.7)

—~ id =& {Name = “Paul’,

b = true Age = 23,
SSN = 999/888777}

1/15/24 45

‘ Global Variable Creation

#2+3;; (* Expression *)

// doesn’ t affect the environment

lettest =3 < 2;; (* Declaration *)
val test : bool = false

/] p; = {test — false}
#leta=1letb =a + 4;; (* Seq of dec *)
// p; ={b—5,a— 1, test - false}

1/15/24 46

‘ Environments

test = true

b=>5

1/15/24 47

‘ New Bindings Hide Old

/] p,={b—5,a—1,test — false}
let test = 3.7;;

= What is the environment after this
declaration?

1/15/24 48

‘ New Bindings Hide Old

/] p,=4{b—5,a—1,test — false}
let test = 3.7;;

= What is the environment after this
declaration?

/| ps={test »3.7,a—>1,b—5}

1/15/24 49

‘ Environments

test = 3.7
b=>5

1/15/24 50

*

Now it’s your turn

You should be able to do WA1-IC
Problem 1, parts (* 1 *) - (* 3 *)

1/15/24 51

i Local Variable Creation

/] p; ={test »3.7,a—>1,b—>5

test > 3.7
> a1
b>5

/] ps = p3={test > 3.7, a—>1,b > 5}

o
-:int=5

1/15/24 53

* Local let binding

/] ps=p3={test > 3.7, a— 1, b
#letc =
let b = 4
/l Ps—{b—>2}+P3
/| ={b—>2 test >3.7,a > 1}
inb *b;;
valc:int=4
/| p={c—>4,test »3.7,a—>1,b—>5}
#b;;
-:int=5

a1 ftest>37
g b>5

1/15/24 54

i Local let binding

/] ps=p3={test > 3.7, a—>1,b

let b =3
// ps—{b—>2}+p3
/!
in b*b;
valc:int=4
// p;={c—>4,test>3.7,a—>1,b->5}
#b;;
-:int=5

1/15/24 55

* Local let binding

/] ps=p3={test > 3.7, a—> 1, b

// ps—{b—>2}

// —{b—>2 e

a1 test>37

valc:int=4
/] p;={c— 4, test »3.7,a—>1,b— 5}
#b;;

-:int=5

c>4 b>5

1/15/24 56

‘ Functions

let plus_twon =n + 2;;

val plus_two : int -> int = <fun>
plus_two 17;;

-:int=19

1/15/24 57

‘ Functions

let plus_two f=n+ 2;;

plus_two 17;;
-:int =19

1/15/24

58

;‘ Nameless Functions (aka Lambda Terms)

—
funn->n+2;;

—
(funn->n+2)17;;

int =197

1/15/24 59

‘ Functions

let plus_twon =n + 2;;

val plus_two : int -> int = <fun>

plus_two 17;;

-:int =19

let plus_two = funn->n + 2;;

val plus_two : int -> int = <fun>

plus_two 14;;

-:int =16

|First definition syntactic sugar for second|

1/15/24

61

‘ Using a nameless function

(fun x-> x * 3) 5;; (* An application *)

-:int =15

#((funy->y+.2.0), (funz->z*3));;
(* As data *)

- : (float -> float) * (int -> int) = (<fun>,
<fun>)

Note: in fun v -> exp(v), scope of variable is
only the body exp(v)

1/15/24 62

‘ Values fixed at declaration time
#letx = 12;; —>
val x :int =12

let plus_x yr=\y + X;;
val plus_x : int -> int = <fun>
plus_x 3;;

What is the result?

1/15/24

64

‘ Values fixed at declaration time

#letx =12;;

val x :int =12

letplus_xy =y +Xx;;

val plus_x : int -> int = <fun>
plus_x 3;;

-:int =15

1/15/24 65

‘ Values fixed at declaration time

letx =7;; (* New declaration, not an
update *)
valx:int=7

plus_x 3;;

What is the result this time?

1/15/24 66

‘ Values fixed at declaration time

let x = 7;; (* New declaration, not an
update *)
valx :int=7

What is the result this time?

1/15/24 67

‘ Values fixed at declaration time

let x = 7;; (* New declaration, not an
update *)
valx:int=7

plus_x 3;;
-:int =15

1/15/24 68

‘ Question

» Observation: Functions are first-class values
in this language

= Question: What value does the environment
record for a function variable?

= Answer: a closure

1/15/24 69

‘ Save the Environment!

= A closureis a pair of an environment and an
association of a formal parameter (the input
variables)* with an expression (the function
body), written:

f — < (v1,..,vn) - exp, pf >

= Where ps is the environment in effect when f
is defined (if f is a simple function)

* Will come back to the “formal parameter”

1/15/24 70

‘ Closure for plus_x

= When plus_x was defined, had environment:
pplus_x = {, X — 12, }
= Recall: let plus_xy =y + x
is really let plus_x = funy ->y + x
= Closure for funy ->vy + x:
<Y =Y + X Pplus_x >
= Environment just after plus_x defined:

{plus_x - <y -y + X, Pplus_x >} + Pplus_x

1/15/24 71

*

Now it’s your turn

You should be able complete ACT1

1/15/24 72

:‘ Functions with more than one argument

let add_threexyz=x+vy + z;;
val add_three : int -> int -> int -> int = <fun>
let t = add_three 6 3 2;;
valt:int =11
let add_three =
funx-> (funy->(funz->x+y+2));;
val add_three : int -> int -> int -> int = <fun>

|Again, first syntactic sugar for second |

1/15/24 77

;‘ Functions with more than one argument

letadd_threexyz=x+y+z;
val add_three : int -> int -> int -> int = <fun>
= What is the value of add_three?

» Let pgq three DE the environment before the
declaration

= Remember:

let add_three =

funx-> (funy-> (funz->x+vy+2);;

Value: <x ->funy -> (fun z -> X + y + 2), padd_three >

1/15/24 78

‘ Partial application of functions

let add_threexyz=x+y + z;;

let h = add_three 5 4;;
val h : int -> int = <fun>
#h3;;

-rint=12

#h7;

-:int =16

1/15/24 79

‘ Partial application of functions

let add_threexyz=x+y + z;;

let h = add_three 5 4;;

val h :int -> int = <fun>

#h 3;;

-rint=12

#h7;;

- 1int =16

|- Partial application also called sectioning |

1/15/24 80

‘ Functions as arguments

let thrice f x = f (f (f x));;

val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
let g = thrice plus_two;;

val g : int -> int = <fun>

#94;;

-:int =10

thrice (fun s -> "Hi! " ~ s) "Good-bye!";;
- : string = "Hi! Hi! Hi! Good-bye!"

1/15/24 81

‘ Tuples as Values

/] p7 ={c— 4, test > 3.7, 5155
a—>1,b->5} C::S;'”'

let s = (5,"hi",3.2);;

val s : int * string * float = (5, "hi", 3.2)

/] ps=4s— (5, "hi", 3.2),
c — 4, test —» 3.7,
a—>1b—->5}

5]
test > 3.7
c2>4

s (5, "hi", 3.2)

1/15/24 83

‘ Pattern Matching with Tuples

/ pg={s— (5 "hi", 3.2), as1 P?5 a3z
c— 4, test - 3.7,

a—>1b-5}
let (a,b,c) =s;; (*(a,b,c)is a pattern *
vala:int=5
val b : string = "hi"
val c : float = 3.2

let x = 2, 9.3;; (* tuples don't require pare
Ocaml *) b ‘hi" test> 37

. T3 6.0, 32) ¢ a2
val x : int * float = (2, 9.3) x> (2,93)
1/15/24 84

c>4

s (5,"hi", 3.2)

s (5,'hi",3.2) >3

‘ Nested Tuples

(*Tuples can be nested *)

let d = ((1,4,62),("bye",15),73.95);;

val d : (int * int * int) * (string * int) * float =
((1, 4, 62), ("bye", 15), 73.95)

(*Patterns can be nested *)

let (p,(st,_),_) = d;; (* _ matches all, binds nothing
*)

valp:int *int * int = (1, 4, 62)

val st : string = "bye"

1/15/24 86

Functions on tuples

let plus_pair (n,m) = n + m;;

val plus_pair : int * int -> int = <fun>
plus_pair (3,4);;

-rint=7

let double x = (x,x);;

val double : 'a -> 'a * 'a = <fun>

double 3;;

-int *int = (3, 3)

double "hi";;

- 1 string * string = ("hi", "hi")

1/15/24 87

‘ Match Expressions

let triple_to_pair triple =

match triple

with (OI X, Y) -> (XI Y)
| (XI OI Y) -> (XI Y)

| (X, ¥, _)-> (X, y);; |*Use first matching clause

*Each clause: pattern on
left, expression on right

*Each x, y has scope of
only its clause

val triple_to_pair : int * int * int -> int * int =
<fun>

1/15/24 88

‘ Closure for plus_pair

» ASSUME pps pair WAS the environment just
before plus_pair defined

= Closure for plus_pair:
<(n,m) = N+ M, pyus pair™>
= Environment just after plus_pair defined:
{plus_pair — <(n,m) - n +m, pyjys pair >+

* Pplus_pair

1/15/24 90

‘ Save the Environment!

= A closureis a pair of an environment and an
association of a pattern (e.g. (v1,...,vn)
giving the input variables) with an
expression (the function body), written:

< (vi,...,vn) —> exp, p >

= Where p is the environment in effect when
the function is defined (for a simple
function)

1/15/24 91

;‘ Evaluating declarations

= Evaluation uses an environment p

= To evaluate a (simple) declaration let x = e
= Evaluate expression e in p to value v
= Update p withxv: {x > v} +p

= Update: p,+ p, has all the bindings in p; and
all those in p, that are not rebound in p;

{x—>2,y—>3a-"hi"t +{y > 100, b - 6}
={x—>2,y—>3,a->"hi" b6}

1/15/24 92

‘ Evaluating expressions in OCaml

= Evaluation uses an environment p

= A constant evaluates to itself, including
primitive operators like + and =

= To evaluate a variable, look it up in p: p(v)
= To evaluate a tuple (ey,...,€,),

= Evaluate each g, to v, right to left for Ocaml
= Then make value (vy,...,v,)

1/15/24 93

‘ Evaluating expressions in OCaml

= To evaluate uses of +, _, etc, eval args,
then do operation
= Function expression evaluates to its closure
= To evaluate a local dec: let x = el in e2
= Eval el to v, then eval €2 using {x — v} + p
= To evaluate a conditional expression:
if b then el else e2
= Evaluate b to a value v
= If v is True, evaluate el
= If v is False, evaluate e2

1/15/24 94

Evaluation of Application with Closures

= Given application expression f e
= In Ocaml, evaluate e to value v

= In environment p, evaluate left term to closure,
C= <(X11---1Xn) - bI p,>

= (Xy,...,X,) variables in (first) argument
= v must have form (vy,...,v,)

= Update the environment p’ to
P” = {Xl - Vlr---r Xn _>Vn}+ p’

= Evaluate body b in environment p”

1/15/24 95

