
4/28/23 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
https://courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

4/28/23 2

Sequencing

{P} C1 {Q} {Q} C2 {R}
{P} C1; C2 {R}

n Example:
{z = z & z = z} x := z {x = z & z = z}
{x = z & z = z} y := z {x = z & y = z}

{z = z & z = z} x := z; y := z {x = z & y = z}

4/28/23 3

Sequencing

{P} C1 {Q} {Q} C2 {R}
{P} C1; C2 {R}

n Example:
{z = z & z = z} x := z {x = z & z = z}
{x = z & z = z} y := z {x = z & y = z}

{z = z & z = z} x := z; y := z {x = z & y = z}

4/28/23 4

Postcondition Weakening

{P} C {Q’} Q’è Q
{P} C {Q}

Example:
{z = z & z = z} x := z; y := z {x = z & y = z}

(x = z & y = z) è (x = y)
{z = z & z = z} x := z; y := z {x = y}

4/28/23 5

Rule of Consequence

P è P’ {P’} C {Q’} Q’è Q
{P} C {Q}

n Logically equivalent to the combination of
Precondition Strengthening and
Postcondition Weakening

n Uses P è P’ and Q’ è Q

4/28/23 7

If Then Else

{P and B} C1 {Q} {P and (not B)} C2 {Q}
{P} if B then C1 else C2 fi {Q}

n Example: Want
{y=a}

if x < 0 then y:= y-x else y:= y+x fi
{y=a+|x|}

Suffices to show:
(1) {y=a&x<0} y:=y-x {y=a+|x|} and
(4) {y=a¬(x<0)} y:=y+x {y=a+|x|}

4/28/23 8

(3) (y=a&x<0)è y-x=a+|x|
(2) {y-x=a+|x|} y:=y-x {y=a+|x|}
(1) {y=a&x<0} y:=y-x {y=a+|x|}

(1) Reduces to (2) and (3) by
Precondition Strengthening

(2) Follows from assignment axiom
(3) Because x<0 è |x| = -x

{y=a&x<0} y:=y-x {y=a+|x|}

4/28/23 9

(6) (y=a¬(x<0))è(y+x=a+|x|)
(5) {y+x=a+|x|} y:=y+x {y=a+|x}}
(4) {y=a¬(x<0)} y:=y+x {y=a+|x|}

(4) Reduces to (5) and (6) by
Precondition Strengthening

(5) Follows from assignment axiom
(6) Because not(x<0) è |x| = x

{y=a¬(x<0)} y:=y+x {y=a+|x|}

4/28/23 10

If then else

(1) {y=a&x<0}y:=y-x{y=a+|x|} .
(4) {y=a¬(x<0)}y:=y+x{y=a+|x|} .

{y=a}
if x < 0 then y:= y-x else y:= y+x

{y=a+|x|}

By the if_then_else rule

4/28/23 11

While

n We need a rule to be able to make
assertions about while loops.
n Inference rule because we can only draw

conclusions if we know something about
the body

n Let’s start with:
{ ? } C { ? }

{ ? } while B do C od { P }

4/28/23 12

While

n The loop may never be executed, so if
we want P to hold after, it had better
hold before, so let’s try:

{ ? } C { ? }
{ P } while B do C od { P }

4/28/23 13

While

n If all we know is P when we enter the
while loop, then we all we know when
we enter the body is (P and B)

n If we need to know P when we finish
the while loop, we had better know it
when we finish the loop body:

{ P and B} C { P }
{ P } while B do C od { P }

4/28/23 14

While

n We can strengthen the previous rule
because we also know that when the
loop is finished, not B also holds

n Final while rule:

{ P and B } C { P }
{ P } while B do C od { P and not B }

4/28/23 16

While

{ P and B } C { P }
{ P } while B do C od { P and not B }

n P satisfying this rule is called a loop
invariant because it must hold
before and after the each iteration
of the loop

4/28/23 17

While

n While rule generally needs to be
used together with precondition
strengthening and postcondition
weakening

n There is NO algorithm for
computing the correct P; it requires
intuition and an understanding of
why the program works

4/28/23 18

Example

n Let us prove
{x>= 0 and x = a}
fact := 1;
while x > 0 do (fact := fact * x; x := x –1) od
{fact = a!}

4/28/23 19

Example

n We need to find a condition P that is true
both before and after the loop is executed,
and such that

(P and not x > 0) è (fact = a!)

4/28/23 20

Example

n First attempt:
{a! = fact * (x!)}

n Motivation:
n What we want to compute: a!
n What we have computed: fact

which is the sequential product of a down
through (x + 1)

n What we still need to compute: x!

4/28/23 21

Example

By post-condition weakening suffices to show
1. {x>=0 and x = a}

fact := 1;
while x > 0 do (fact := fact * x; x := x –1) od
{a! = fact * (x!) and not (x > 0)}

and
2. {a! = fact * (x!) and not (x > 0) } è {fact = a!}

4/28/23 22

Problem

2. {a! = fact * (x!) and not (x > 0)} è {fact = a!}
n Don’t know this if x < 0
n Need to know that x = 0 when loop

terminates
n Need a new loop invariant
n Try adding x >= 0
n Then will have x = 0 when loop is done

4/28/23 23

Example

Second try, combine the two:
P = {a! = fact * (x!) and x >=0}

Again, suffices to show
1. {x>=0 and x = a}

fact := 1;
while x > 0 do (fact := fact * x; x := x –1) od
{P and not x > 0}

and
2. {P and not x > 0} è {fact = a!}

4/28/23 24

Example

n For 2, we need
{a! = fact * (x!) and x >=0 and not (x > 0)} è

{fact = a!}
But {x >=0 and not (x > 0)} è {x = 0} so

fact * (x!) = fact * (0!) = fact
Therefore
{a! = fact * (x!) and x >=0 and not (x > 0)} è

{fact = a!}

4/28/23 25

Example

n For 1, by the sequencing rule it suffices to
show

3. {x>=0 and x = a}
fact := 1

{a! = fact * (x!) and x >=0 }
And
4. {a! = fact * (x!) and x >=0}

while x > 0 do
(fact := fact * x; x := x –1) od

{a! = fact * (x!) and x >=0 and not (x > 0)}

4/28/23 27

Example

n Suffices to show that
{a! = fact * (x!) and x >= 0}

holds before the while loop is entered and
that if

{(a! = fact * (x!)) and x >= 0 and x > 0}
holds before we execute the body of the
loop, then

{(a! = fact * (x!)) and x >= 0}
holds after we execute the body

4/28/23 28

Example

By the assignment rule, we have
{a! = 1 * (x!) and x >= 0}

fact := 1
{a! = fact * (x!) and x >= 0}

Therefore, to show (3), by
precondition strengthening, it suffices
to show

(x>= 0 and x = a) è
(a! = 1 * (x!) and x >= 0)

4/28/23 29

Example

(x>= 0 and x = a) è
(a! = 1 * (x!) and x >= 0)

holds because x = a è x! = a!

Have that {a! = fact * (x!) and x >= 0}
holds at the start of the while loop

4/28/23 30

Example

To show (4):
{a! = fact * (x!) and x >=0}
while x > 0 do
(fact := fact * x; x := x –1)
od
{a! = fact * (x!) and x >=0 and not (x > 0)}

we need to show that
{(a! = fact * (x!)) and x >= 0}

is a loop invariant

4/28/23 31

Example

We need to show:
{(a! = fact * (x!)) and x >= 0 and x > 0}

(fact = fact * x; x := x – 1)
{(a! = fact * (x!)) and x >= 0}

We will use assignment rule,
sequencing rule and precondition
strengthening

4/28/23 32

Example

By the assignment rule, we have
{(a! = fact * ((x-1)!)) and x – 1 >= 0}

x := x – 1
{(a! = fact * (x!)) and x >= 0}

By the sequencing rule, it suffices to show
{(a! = fact * (x!)) and x >= 0 and x > 0}

fact = fact * x
{(a! = fact * ((x-1)!)) and x – 1 >= 0}

4/28/23 33

Example

By the assignment rule, we have that
{(a! = (fact * x) * ((x-1)!)) and x – 1 >= 0}

fact = fact * x
{(a! = fact * ((x-1)!)) and x – 1 >= 0}

By Precondition strengthening, it suffices
to show that
((a! = fact * (x!)) and x >= 0 and x > 0) è
((a! = (fact * x) * ((x-1)!)) and x – 1 >= 0)

4/28/23 34

Example

However
fact * x * (x – 1)! = fact * (x!)

and (x > 0) è x – 1 >= 0
since x is an integer,so

{(a! = fact * (x!)) and x >= 0 and x > 0} è
{(a! = (fact * x) * ((x-1)!)) and x – 1 >= 0}

4/28/23 35

Example

Therefore, by precondition strengthening
{(a! = fact * (x!)) and x >= 0 and x > 0}

fact = fact * x
{(a! = fact * ((x-1)!)) and x – 1 >= 0}

This finishes the proof

