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Axiomatic Semantics

n Also called Floyd-Hoare Logic
n Based on formal logic (first order 

predicate calculus)
n Axiomatic Semantics is a logical system 

built from axioms and inference rules
n Mainly suited to simple imperative 

programming languages
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Axiomatic Semantics

n Used to formally prove a property (post-
condition) of the state (the values of the 
program variables) after the execution 
of program, assuming another property 
(pre-condition) of the state holds before 
execution



4/26/23 5

Axiomatic Semantics

n Goal: Derive statements of form
{P} C {Q}

n P , Q logical statements about state, 
P precondition, Q postcondition,        
C program

n Example:  {x = 1} x := x + 1 {x = 2}
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Axiomatic Semantics

n Approach: For each type of language 
statement, give an axiom or inference rule 
stating how to derive assertions of form 

{P} C {Q} 
where C is a statement of that type

n Compose axioms and inference rules to build 
proofs for complex programs
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Axiomatic Semantics

n An expression {P} C {Q} is a partial 
correctness statement

n For total correctness must also prove 
that C terminates (i.e. doesn’t run 
forever)
n Written:  [P] C [Q]

n Will only consider partial correctness 
here
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Language

n We will give rules for simple imperative 
language

<command>
::= <variable> := <term>

|  <command>; … ;<command>
|  if <statement> then <command> else 
<command> fi
| while <statement> do <command> od

n Could add more features, like for-loops
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Substitution

n Notation:   P[e/v]  (sometimes P[v <- e])

n Meaning:   Replace every v in P by e

n Example: 
(x + 2) [y-1/x] = ((y – 1) + 2)
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The Assignment Rule

{P [e/x] } x := e {P}
Example:

{    ?    } x := y {x = 2}



4/26/23 11

The Assignment Rule

{P [e/x] } x := e {P}
Example:

{ _ = 2 } x := y { x = 2}
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The Assignment Rule

{P [e/x] } x := e {P}
Example:

{ y = 2 } x := y { x = 2}
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The Assignment Rule

{P [e/x] } x := e {P}

Examples:

{y = 2} x := y {x = 2}

{y = 2} x := 2 {y = x}

{x + 1 = n + 1} x := x + 1  {x = n + 1}

{2 = 2} x := 2 {x = 2}
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The Assignment Rule – Your Turn

n What is the weakest precondition of
x := x + y {x + y = w – x}?

{(x + y) + y = w – (x + y)}
x := x + y

{x + y = w – x}

?
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The Assignment Rule – Your Turn

n What is the weakest precondition of
x := x + y {x + y = w – x}?

{(x + y) + y = w – (x + y)}
x := x + y

{x + y = w – x}
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1725 minutes
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Precondition Strengthening

P è P’ {P’} C {Q}
{P} C {Q}

n Meaning: If we can show that P
implies P’ (Pè P’) and we can 
show that {P’} C {Q}, then we know 
that {P} C {Q}

n P is stronger than P’ means P è
P’
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Precondition Strengthening

n Examples:
x = 3 è x < 7  {x < 7} x := x + 3 {x < 10}

{x = 3} x := x + 3 {x < 10}

True è 2 = 2   {2 = 2} x:= 2 {x = 2}
{True}  x:= 2 {x = 2}

x=n è x+1=n+1    {x+1=n+1} x:=x+1 {x=n+1}
{x=n} x:=x+1 {x=n+1}
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Which Inferences Are Correct?

{x > 0 & x < 5} x := x * x {x < 25}
{x = 3} x := x * x {x < 25}

{x = 3} x := x * x {x < 25}
{x > 0 & x < 5} x := x * x {x < 25}

{x * x < 25 } x := x * x {x < 25}
{x > 0 & x < 5} x := x * x {x < 25}
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Which Inferences Are Correct?

{x > 0 & x < 5} x := x * x {x < 25}
{x = 3} x := x * x {x < 25}

{x = 3} x := x * x {x < 25}
{x > 0 & x < 5} x := x * x {x < 25}

{x * x < 25 } x := x * x {x < 25}
{x > 0 & x < 5} x := x * x {x < 25}
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Sequencing

{P} C1 {Q}     {Q} C2 {R}
{P} C1; C2 {R}

n Example:
{z = z & z = z} x := z {x = z & z = z}
{x = z & z = z} y := z {x = z & y = z}

{z = z & z = z} x := z; y := z {x = z & y = z}
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Sequencing

{P} C1 {Q}     {Q} C2 {R}
{P} C1; C2 {R}

n Example:
{z = z & z = z} x := z {x = z & z = z}
{x = z & z = z} y := z {x = z & y = z}

{z = z & z = z} x := z; y := z {x = z & y = z}
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Postcondition Weakening

{P} C {Q’}    Q’è Q
{P} C {Q}

Example:
{z = z & z = z} x := z; y := z {x = z & y = z}

(x = z & y = z) è (x = y)
{z = z & z = z} x := z; y := z {x = y}
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Rule of Consequence

P è P’ {P’} C {Q’}    Q’è Q
{P} C {Q}

n Logically equivalent to the combination of 
Precondition Strengthening and 
Postcondition Weakening

n Uses P è P’ and  Q’ è Q
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1750 minutes
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If Then Else

{P and B} C1 {Q}   {P and (not B)} C2 {Q}
{P} if B then C1 else C2 fi {Q}

n Example:  Want
{y=a}

if x < 0 then y:= y-x else y:= y+x fi
{y=a+|x|}

Suffices to show:
(1) {y=a&x<0}  y:=y-x  {y=a+|x|}  and      
(4) {y=a&not(x<0)}  y:=y+x  {y=a+|x|}
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(3)        (y=a&x<0)è y-x=a+|x|
(2)      {y-x=a+|x|}  y:=y-x   {y=a+|x|}
(1)      {y=a&x<0}  y:=y-x  {y=a+|x|}

(1) Reduces to (2) and (3) by  
Precondition Strengthening

(2) Follows from assignment axiom
(3) Because x<0 è |x| = -x

{y=a&x<0}  y:=y-x  {y=a+|x|}
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(6)     (y=a&not(x<0))è(y+x=a+|x|)
(5) {y+x=a+|x|}  y:=y+x   {y=a+|x}}
(4)   {y=a&not(x<0)}  y:=y+x  {y=a+|x|}

(4) Reduces to (5) and (6) by 
Precondition Strengthening

(5) Follows from assignment axiom
(6) Because not(x<0) è |x| = x

{y=a&not(x<0)} y:=y+x {y=a+|x|}
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If then else

(1)          {y=a&x<0}y:=y-x{y=a+|x|}         .
(4)      {y=a&not(x<0)}y:=y+x{y=a+|x|}     .

{y=a} 
if x < 0 then y:= y-x else y:= y+x

{y=a+|x|}

By the if_then_else rule
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While

n We need a rule to be able to make 
assertions about while loops.
n Inference rule because we can only draw 

conclusions if we know something about 
the body

n Let’s start with:
{     ?     }     C    {      ?     }

{      ?      }   while   B  do C od {  P  }
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While

n The loop may never be executed, so if 
we want P to hold after, it had better 
hold before, so let’s try:

{     ?     }     C    {      ?     }
{  P  }  while   B  do C od {  P  }
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While

n If all we know is  P when we enter the 
while loop, then we all we know when 
we enter the body is   (P and  B)

n If we need to know   P when we finish 
the while loop, we had better know it 
when we finish the loop body:

{ P and B}  C  { P }
{ P }  while B  do C od { P }
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While

n We can strengthen the previous rule 
because we also know that when the 
loop is finished,  not B also holds

n Final while rule:

{ P and B }  C  { P }
{ P } while  B  do C od { P and not B }


