Programming Languages and
Compilers (CS 421)

i

IElsa L Gunter
2112 SC, UIUC v

https://courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

4/12/23 1

‘ Programming Languages & Compilers

Three Main Topics of the Course

New
Programming
Paradigm

Language
Translation

Language
Semantics

4/12/23 2

‘ Programming Languages & Compilers

4/12/23 3

‘ Programming Languages & Compilers

Il : Language Semantics

Lambda
Calculus

Axiomatic
Semantics

Operational

Semantics

4/12/23 4

‘ Programming Languages & Compilers

/Ccs426 \
\ Ccs477 )

/ (csa22)

/
/

S/pecificationwf(; 7I77rrnplementati\on -

4/12/23

‘ Semantics

= Expresses the meaning of syntax

= Static semantics

= Meaning based only on the form of the
expression without executing it

= Usually restricted to type checking / type
inference

4/12/23 6




‘ Dynamic semantics

= Method of describing meaning of
executing a program
= Several different types:
= Operational Semantics
= Axiomatic Semantics
= Denotational Semantics

4/12/23 7

‘ Dynamic Semantics

= Different languages better suited
to different types of semantics

= Different types of semantics
serve different purposes

4/12/23 8

‘ Operational Semantics

= Start with a simple notion of machine

= Describe how to execute (implement)
programs of language on virtual machine, by
describing how to execute each program
statement (ie, following the structure of the
program)

= Meaning of program is how its execution
changes the state of the machine

= Useful as basis for implementations

4/12/23 9

‘ Axiomatic Semantics

= Also called Floyd-Hoare Logic

= Based on formal logic (first order
predicate calculus)

= Axiomatic Semantics is a logical system
built from axioms and inference rules

= Mainly suited to simple imperative
programming languages

4/12/23 10

‘ Axiomatic Semantics

= Used to formally prove a property
(post-condition) of the state (the
values of the program variables) after
the execution of program, assumin
another property (pre-condition) of the
state before execution

= Written :

{Precondition} Program {Postcondition}

= Source of idea of /oop invariant

4/12/23 11

‘ Denotational Semantics

= Construct a function s assigning a
mathematical meaning to each program
construct

= Lambda calculus often used as the range
of the meaning function

= Meaning function is compositional:
meaning of construct built from meaning
of parts

= Useful for proving properties of programs

4/12/23 12




‘ Natural Semantics

= Aka “Big Step Semantics”

= Provide value for a program by rules and
derivations, similar to type derivations

= Rule conclusions look like
(C,m)Um’
or
(E,m)Uv

4/12/23 14

‘ Simple Imperative Programming Language

» [ e Identifiers

s Ve Numerals

m Bii=true | false | B& B| Bor B| not B
| E<E| E=F

s E=N|IJE+EJE*XEJ/E-E]-E

wn Ci=skip| GC| I::=E
| if Bthen Celse Cfi | while Bdo Cod

4/12/23 15

;‘ Natural Semantics of Atomic Expressions

= Identifiers: (Zm) U m(1)

= Numerals are values: (N,m) U &

= Booleans: (true,m) U true
(false ,m) U false

4/12/23 16

‘ Booleans:

(B, m) | false (B, m)U true (B, m)l b

(B& B’, m)l false B&B,mlb

(B, m) U true (B, m)\ false (B, m)U b

(Bor B°, m) U true (Bor B, m)l b

(B, m)\l false
(not B, m) U true

(B, m) | true
(not B, m) | false

4/12/23 17

‘ Relations

EmiU (E,miV U~V=0p
(E~E, minb

= By U ~ V = b, we mean does (the meaning
of) the relation ~ hold on the meaning of U
and V

= May be specified by a mathematical
expression/equation or rules matching ¢ and

4/12/23 18

‘ Arithmetic Expressions

Emivu (E,mlV UopV=N
(EopE', m)U N
where Nis the specified value for U op V

4/12/23 19




‘ Commands

Skip: (skip, m) U m

Assignment: (Em) v

(F:=Em)U mI<--V]

Sequencing: (Cm) U m’ (C' ,mYU m”’

<cc,miIm’

- 4/12/23 21

‘ If Then Else Command

(Bm) U true (Cm U m’
(if Bthen Celse C” fi, m) U m’

(Bm) U false (C’,m)U m’
(if Bthen Celse C’ fi, m) I m’

4/12/23 22

‘ While Command

(B,m) U false
(while Bdo Cod, m) U m

(Bm)true (CmUm’ (while Bdo Cod, m” YUm”’

(while Bdo Cod, m) U m’”’

4/12/23 23

‘ Example: If Then Else Rule

(if x >5theny:=2 + 3 else y:=3 + 4fi,
x->7pU?

4/12/23 24

‘ Example: If Then Else Rule

(x>5, {x->7p)l?
(if x> 5theny:=2 + 3 else y:=3 + 4fi,
x->7)U 2

4/12/23 25

‘ Example: Arith Relation

?>7?=7

xAx->7HU? (5, {x->7})U?

(x>5, {x->7p)U?
(if x >5theny:=2 + 3 else y:=3 + 4fi,
x->7) U2

4/12/23 26




‘ Example: Identifier(s)

7 > 5 = true
xAx->7W7  (5{x->71)U5
(x> 5, {x->7)J?
(if x> 5theny:=2 + 3 elsey:=3 + 4fi,
{x->7)U?

4/12/23 27

‘ Example: Arith Relation

7 > 5 = true
x{->7)O07  (5,{x->7)U5
(x > 5, {x -> 7})ltrue
(ifx>5theny:=2 + 3 elsey:=3 +4f,
x->7pU?

4/12/23 28

‘ Example: If Then Else Rule

7 > 5 =true

xx->7W7 (5 {x->7)U5 (yi= 2+ 3,{x->7})
(x > 5, {x -> 7})true U»
(if x> 5theny:=2 + 3 elsey:=3 + 4fj,
x->7) 02

4/12/23 29

‘ Example: Assignment

7 > 5 = true (2+3, {x->7)U?

xx->7W7 (5 {x->71HU5 (y:i= 2+ 3,{x->7})
(x > 5, {x -> 7})ltrue U»
(if x >5theny:=2 + 3 elsey:=3 + 4fj,
x->7) 02

4/12/23 30

‘ Example: Arith Op
2+2=7?

{x>7NV? (3 {x->7}) U?

7 > 5 = true (2+3, {x->7)U?
xLx->7W7 (5 {x->71U5 (yi= 2 + 3,{x-> 7})
(x > 5, {x -> 7})true U2

(if x> 5theny:=2 + 3 else y:=3 + 4fi,
x->7) U2

4/12/23 31

‘ Example: Numerals
2+3=5

QR {x->7DU2  (34{x->7}) U3

7 > 5 = true (2+3, {x->7)?

(xAx->7W7 (5{x->71HU5 (yi=2+3,{x>7})
(x > 5, {x -> 7})ltrue U2
(if x >5theny:=2 + 3 else y:=3 + 4fi,
x->7) U2

4/12/23 32




‘ Example: Arith Op
2+3=5

2, {x>7HU2  34{x->7}) U3

7 > 5 = true (243, {x->7)U5
xAx->7MW7  (54x->7HU5 (y:i= 2 + 3,{x->7})
(x > 5, {x -> 7})ltrue U?
(if x> 5theny:=2 + 3 elsey:=3 + 4fi,

x->7) U 2

4/12/23 33

‘ Example: Assignment
2+3=5

Q{x->7HU2  34{x->7}) U3

7 > 5 = true (2+3, {x->7)U5
x{x->7W7  (5{x->7HU5 (y:= 2+ 3{x->7})
(x > 5, {x -> 7})ltrue U {x->7, y->5}
(if x> 5theny:=2 + 3 elsey:=3 + 4fi,

x->73) 12

4/12/23 34

‘ Example: If Then Else Rule

2+3=5
2, {x->7VW2  3,{x->7}) U3

(2+3, {x->7})U5
xx->7W7 (5 {x->7)U5 (yi= 2+ 3,{x->7})
(x > 5, {x -> 7})Utrue U {x->7, y->5}
(if x> 5theny:=2 + 3 elsey:=3 + 4fj,

{x->7){ {x->7, y->5}

7 > 5 = true

4/12/23 35

‘ Let in Command

(gm) W (GmiI<-A) U m’
(let7T=FinCmim’”’

Where m”’ (y) = m’ () for y= I'and
m’’ (1) = m (1) if m(1) is defined,
and m’’ (1) is undefined otherwise

4/12/23 36

‘ Example

x{x->5D U5 (3{x>5)U3

(x+3,{x->5}) U 8

(5{x->17}) U5  (x:=x+3,{x->5}) U {x->8}

(let x = 5in (x;=x+3), {x -> 17}) U ?

4/12/23 37

‘ Example

(x{x->51) U5 (3{x->5) U3

(x+3,{x->5}) U 8
(5{x->17) U5  (x:=x+3,{x->5}) U {x->8}
(let x = 5in (x:=x+3), {x -> 17}) U {x->17}

4/12/23 38




‘ Comment

= Simple Imperative Programming Language
introduces variables /implicitly through
assignment

= The let-in command introduces scoped
variables explictly

= Clash of constructs apparent in awkward
semantics

4/12/23 39

‘ Interpretation Versus Compilation

= A compiler from language L1 to language
L2 is a program that takes an L1 program
and for each piece of code in L1 generates a
piece of code in L2 of same meaning

= An interpreter of L1 in L2 is an L2 program
that executes the meaning of a given L1
program

= Compiler would examine the body of a loop
once; an interpreter would examine it every
time the loop was executed

4/12/23 40

‘ Interpreter

» An Interpreter represents the operational
semantics of a language L1 (source
language) in the language of implementation
L2 (target language)

= Built incrementally
= Start with literals
= Variables
= Primitive operations
= Evaluation of expressions
= Evaluation of commands/declarations

4/12/23 a4




