
4/2/23 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
https://courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.engr.illinois.edu/cs421/sp2023

4/2/23 2

Ambiguous Grammars and Languages

n A BNF grammar is ambiguous if its language
contains strings for which there is more than
one parse tree

n If all BNF’s for a language are ambiguous
then the language is inherently ambiguous

4/2/23 3

Example: Ambiguous Grammar

n 0 + 1 + 0
<Sum> <Sum>

<Sum> + <Sum> <Sum> + <Sum>

<Sum> + <Sum> 0 0 <Sum> + <Sum>

0 1 1 0

4/2/23 4

Example

n What is the result for:
3 + 4 * 5 + 6

4/2/23 5

Example

n What is the result for:
3 + 4 * 5 + 6

n Possible answers:
n 41 = ((3 + 4) * 5) + 6
n 47 = 3 + (4 * (5 + 6))
n 29 = (3 + (4 * 5)) + 6 = 3 + ((4 * 5) + 6)
n 77 = (3 + 4) * (5 + 6)

4/2/23 6

Example

n What is the value of:
7 – 5 – 2

4/2/23 7

Example

n What is the value of:
7 – 5 – 2

n Possible answers:
n In Pascal, C++, SML assoc. left

7 – 5 – 2 = (7 – 5) – 2 = 0
n In APL, associate to right

7 – 5 – 2 = 7 – (5 – 2) = 4

4/2/23 8

Two Major Sources of Ambiguity

n Lack of determination of operator
precedence

n Lack of determination of operator
associativity

n Not the only sources of ambiguity

4/2/23 9

Example

n Ambiguous grammar:
<exp> ::= 0 | 1 | (<exp>)

| <exp> + <exp>
| <exp> * <exp>

n Strings with more then one parse:
0 + 1 + 0
1 * 1 + 1

n Sources of ambiguity here: associativity
and precedence

10/4/07 10

Operator Precedence

n Operators of highest precedence get
arguments first (bind more tightly).
n This generally means evaluated first

n Precedence for infix binary operators
given in following table

n Needs to be reflected in grammar

10/4/07 11

Precedence Table - Sample

Fortan Pascal C/C++ Ada SML

highest ** *, /,
div,
mod

++, -- ** div,
mod,
/, *

*, / +, - *, /,
%

*, /,
mod

+, -,
^

+, - +, - +, - ::

Disambiguating a Grammar

n Given ambiguous grammar G, with start
symbol S, find a grammar G’ with same start
symbol, such that

language of G = language of G’
n Not always possible
n No algorithm in general

4/3/23 13

Disambiguating a Grammar

n Idea: Each non-terminal represents all
strings having some property, its language
n Each rule describes a sublanguage

n Identify these properties (often in terms of
things that can’t happen)

n Use these properties to inductively
guarantee every string in language has a
unique parse

4/3/23 14

Steps to Grammar Disambiguation

n Identify the rules and a smallest use that display
ambiguity

n Decide which parse to keep; why should others be
thrown out?

n What syntactic restrictions on subexpressions are needed
to throw out the bad (while keeping the good)?

n Add a new non-terminal and rules to describe this set of
restricted subexpressions (called stratifying, or
refactoring)

n Characterize each non-terminal by a language
invariant

n Replace old rules to use new non-terminals
n Rinse and repeat

4/3/23 15

10/4/07 16

How to Enforce Associativity

n Have at most one recursive call per
production

n When two or more recursive calls would
be natural, leave right-most one for
right associativity, left-most one for left
associativity

10/4/07 17

Example

n <Sum> ::= 0 | 1 | <Sum> + <Sum>
| (<Sum>)

n Becomes
n <Sum> ::= <Num> | <Num> + <Sum>
n <Num> ::= 0 | 1 | (<Sum>)

<Sum> + <Sum> + <Sum>

10/4/07 18

Predence in Grammar

n Higher precedence translates to longer
derivation chain

n Example: * higher than +, both assoc left
<exp> ::= 0 | 1 | (exp>)

| <exp> + <exp> | <exp> * <exp>
n Becomes

<exp> ::= <mult_exp>
| <exp> + <mult_exp>

<mult_exp> ::= <id> | <mult_exp> * <id>
<id> ::= 0 | 1 | (<exp>)

Many other sources

n Many other sources
n Can apply same general approach
n Need insights into cause
n Need insights into restrictions to solve
n No general algorithm
n Process:

n Stratify
n Prove sublanguages disjoint
n Prove union of new sublanguages give old language

n Method: Invariants and Induction

4/3/23 19

