
3/19/23 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
https://courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

Programming Languages & Compilers

3/19/23 2

I

New
Programming

Paradigm

II

Language
Translation

III

Language
Semantics

Three Main Topics of the Course

Programming Languages & Compilers

3/19/23 3

Lexing and
Parsing

Type
Systems

Interpretation

II : Language Translation

Major Phases of a Compiler

Source Program
Lex

Tokens
Parse

Abstract Syntax
Semantic
Analysis

Symbol Table
Translate

Intermediate
Representation

Modified from “Modern Compiler Implementation in ML”, by Andrew Appel

Instruction
Selection

Optimized Machine-Specific
Assembly Language

Optimize

Unoptimized Machine-
Specific Assembly Language

Emit code

Assembler

Relocatable
Object Code

Assembly Language

Linker
Machine

Code

Optimize
Optimized IR

3/19/23 5

Where We Are Going Next?

n We want to turn strings (code) into
computer instructions

n Done in phases
n Turn strings into abstract syntax trees

(parse)
n Translate abstract syntax trees into

executable instructions (interpret or compile)

3/19/23 6

Meta-discourse

n Language Syntax and Semantics
n Syntax

- Regular Expressions, DFSAs and NDFSAs
- Grammars

n Semantics
- Natural Semantics
- Transition Semantics

3/19/23 7

Language Syntax

n Syntax is the description of which strings of
symbols are meaningful expressions in a
language

n It takes more than syntax to understand a
language; need meaning (semantics) too

n Syntax is the entry point

3/19/23 8

Syntax of English Language

n Pattern 1

n Pattern 2

3/19/23 10

Elements of Syntax

n Character set – previously always ASCII,
now often 64 character sets

n Keywords – usually reserved
n Special constants – cannot be assigned to
n Identifiers – can be assigned to
n Operator symbols
n Delimiters (parenthesis, braces, brackets)
n Blanks (aka white space)

3/19/23 11

Elements of Syntax

n Expressions
!"#$$$#%&'(#)'*!(#$$$#+#$$$#'(,#'-.'#)'*!(#$$$#+#$$$#'(,

n Type expressions
%/0'102! 34# %/0'102"

n Declarations (in functional languages)
-'%#05%%'2(6# '102

n Statements (in imperative languages)
5#6#)#7#8##

n Subprograms
-'%#05%%'2(! 6# '102! !(# '102

3/19/23 12

Elements of Syntax

n Modules
n Interfaces
n Classes (for object-oriented languages)

3/19/23 13

Lexing and Parsing

n Converting strings to abstract syntax trees
done in two phases
n Lexing: Converting string (or streams of

characters) into lists (or streams) of
tokens (the “words” of the language)
n Specification Technique: Regular Expressions

n Parsing: Convert a list of tokens into an
abstract syntax tree
n Specification Technique: BNF Grammars

3/19/23 14

Formal Language Descriptions

n Regular expressions, regular grammars,
finite state automata

n Context-free grammars, BNF grammars,
syntax diagrams

n Whole family more of grammars and
automata – covered in automata theory

3/19/23 15

Grammars

n Grammars are formal descriptions of which
strings over a given character set are in a
particular language

n Language designers write grammar
n Language implementers use grammar to

know what programs to accept
n Language users use grammar to know how

to write legitimate programs

3/19/23 16

Regular Expressions - Review

n Start with a given character set –
a, b, c…

n L(ε) = {“” }
n Each character is a regular expression

n It represents the set of one string
containing just that character

n L(a) = {a}

3/19/23 17

Regular Expressions

n If x and y are regular expressions, then xy is
a regular expression
n It represents the set of all strings made from first

a string described by x then a string described by
y

If L(x)={a,ab} and L(y)={c,d}
then L(xy) ={ac,ad,abc,abd}

3/19/23 18

Regular Expressions

n If x and y are regular expressions, then xÚy
is a regular expression
n It represents the set of strings described by

either x or y
If L(x)={a,ab} and L(y)={c,d}

then L(x Ú y)={a,ab,c,d}

3/19/23 19

Regular Expressions

n If x is a regular expression, then so is (x)
n It represents the same thing as x

n If x is a regular expression, then so is x*
n It represents strings made from concatenating zero

or more strings from x
If L(x) = {a,ab} then L(x*) ={“”,a,ab,aa,aab,abab,…}

n e
n It represents {“”}, set containing the empty string

n Φ
n It represents { }, the empty set

3/19/23 20

Example Regular Expressions

n (0Ú1)*1
n The set of all strings of 0’s and 1’s ending in 1,

{1, 01, 11,…}
n a*b(a*)

n The set of all strings of a’s and b’s with exactly
one b

n ((01) Ú(10))*
n You tell me

n Regular expressions (equivalently, regular
grammars) important for lexing, breaking
strings into recognized words

3/19/23 22

Right Regular Grammars

n Subclass of BNF (covered in detail sool)
n Only rules of form

<nonterminal>::=<terminal><nonterminal> or
<nonterminal>::=<terminal> or
<nonterminal>::=ε

n Defines same class of languages as regular
expressions

n Important for writing lexers (programs that
convert strings of characters into strings of
tokens)

n Close connection to nondeterministic finite state
automata – nonterminals = states; rule = edge~ ~

3/19/23 23

Example

n Right regular grammar:
<Balanced> ::= e
<Balanced> ::= 0<OneAndMore>
<Balanced> ::= 1<ZeroAndMore>
<OneAndMore> ::= 1<Balanced>
<ZeroAndMore> ::= 0<Balanced>

n Generates even length strings where every
initial substring of even length has same
number of 0’s as 1’s

3/19/23 24

Implementing Regular Expressions

n Regular expressions reasonable way to
generate strings in language

n Not so good for recognizing when a
string is in language

n Problems with Regular Expressions
n which option to choose,
n how many repetitions to make

n Answer: finite state automata
n Should have seen in CS374

3/19/23 25

Example: Lexing

n Regular expressions good for describing
lexemes (words) in a programming language
n Identifier = (a Ú b Ú … Ú z Ú A Ú B Ú … Ú Z) (a
Ú b Ú … Ú z Ú A Ú B Ú … Ú Z Ú 0 Ú 1 Ú … Ú 9)*

n Digit = (0 Ú 1 Ú … Ú 9)
n Number = 0 Ú (1 Ú … Ú 9)(0 Ú … Ú 9)* Ú

~ (1 Ú … Ú 9)(0 Ú … Ú 9)*
n Keywords: if = if, while = while,…

