

Where We Are Going Next?

- We want to turn strings (code) into computer instructions
- Done in phases
- Turn strings into abstract syntax trees (parse)
- Translate abstract syntax trees into executable instructions (interpret or compile)

Language Syntax

- Syntax is the description of which strings of symbols are meaningful expressions in a language
- It takes more than syntax to understand a language; need meaning (semantics) too
- Syntax is the entry point

Elements of Syntax

- Character set - previously always ASCII, now often 64 character sets
- Keywords - usually reserved
- Special constants - cannot be assigned to
- Identifiers - can be assigned to
- Operator symbols
- Delimiters (parenthesis, braces, brackets)
- Blanks (aka white space)

Elements of Syntax

- Modules
- Interfaces
- Classes (for object-oriented languages)

Lexing and Parsing

- Converting strings to abstract syntax trees done in two phases
- Lexing: Converting string (or streams of characters) into lists (or streams) of tokens (the "words" of the language)
- Specification Technique: Regular Expressions
- Parsing: Convert a list of tokens into an abstract syntax tree
- Specification Technique: BNF Grammars

Formal Language Descriptions

- Regular expressions, regular grammars, finite state automata
- Context-free grammars, BNF grammars, syntax diagrams
- Whole family more of grammars and automata - covered in automata theory

Regular Expressions - Review

Start with a given character set a, b, c...

- $L(\boldsymbol{\varepsilon})=\{" "\}$
- Each character is a regular expression
- It represents the set of one string containing just that character
- $L(\mathrm{a})=\{\mathrm{a}\}$

Regular Expressions

- If \mathbf{x} and \mathbf{y} are regular expressions, then $\mathbf{x} \vee \mathbf{y}$ is a regular expression
- It represents the set of strings described by either \mathbf{x} or \mathbf{y}

If $L(x)=\{a, a b\}$ and $L(y)=\{c, d\}$ then $L(x \vee y)=\{a, a b, c, d\}$

Regular Expressions

- If \mathbf{x} is a regular expression, then so is (\mathbf{x})
- It represents the same thing as \mathbf{x}
- If \mathbf{x} is a regular expression, then so is \mathbf{x}^{*}
- It represents strings made from concatenating zero or more strings from \mathbf{x}
If $L(x)=\{a, a b\}$ then $L\left(x^{*}\right)=\{"$ ", $a, a b, a a, a a b, a b a b, \ldots\}$
- ε
- It represents \{""\}, set containing the empty string
- \varnothing
- It represents \{ \}, the empty set

Example Regular Expressions

- $(0 \vee 1) * 1$
- The set of all strings of $\mathbf{0}$'s and $\mathbf{1}$'s ending in 1 , $\{1,01,11, \ldots\}$
- $a^{*} b(a *)$
- The set of all strings of a's and b's with exactly one b
- ((01) $\vee(10))^{*}$
- You tell me
- Regular expressions (equivalently, regular grammars) important for lexing, breaking strings into recognized words

Example

- Right regular grammar:
<Balanced> ::=
<Balanced> ::= 0<OneAndMore>
<Balanced> ::= 1<ZeroAndMore>
<OneAndMore> ::= 1 <Balanced>
<ZeroAndMore> ::= 0<Balanced>
- Generates even length strings where every initial substring of even length has same number of 0 ' s as 1's

Example: Lexing

- Regular expressions good for describing lexemes (words) in a programming language
. Identifier $=(a \vee b \vee \ldots \vee Z \vee A \vee B \vee \ldots \vee Z)(a$ $\vee b \vee \ldots \vee z \vee A \vee B \vee \ldots \vee Z \vee 0 \vee 1 \vee \ldots \vee 9)^{*}$
- Digit $=(0 \vee 1 \vee \ldots \vee 9)$
- Number $=0 \vee(1 \vee \ldots \vee 9)(0 \vee \ldots \vee 9)^{*} \vee$ $\sim(1 \vee \ldots \vee 9)(0 \vee \ldots \vee 9)^{*}$
- Keywords: if = if, while = while,...

Right Regular Grammars

- Subclass of BNF (covered in detail sool)
- Only rules of form
<nonterminal>::=<terminal><nonterminal> or <nonterminal>::=<terminal> or <nonterminal>::=
- Defines same class of languages as regular expressions
- Important for writing lexers (programs that convert strings of characters into strings of tokens)
- Close connection to nondeterministic finite state automata - nonterminals \cong states; rule \cong edge

Implementing Regular Expressions

- Regular expressions reasonable way to generate strings in language
- Not so good for recognizing when a string is in language
- Problems with Regular Expressions
- which option to choose,
- how many repetitions to make
- Answer: finite state automata
- Should have seen in CS374

