Programming Languages and Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
https://courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha
Terms made from constructors and variables (for the simple first order case)

Constructors may be applied to arguments (other terms) to make new terms

Variables and constructors with no arguments are base cases

Constructors applied to different number of arguments (arity) considered different

Substitution of terms for variables
type term = Variable of string
 | Const of (string * term list)

let x = Variable "a";; let tm = Const ("2",[]);;

let rec subst var_name residue term =
 match term with Variable name ->
 if var_name = name then residue else term
 | Const (c, tys) ->
 Const (c, List.map (subst var_name residue) tys);;
Given a set of pairs of terms ("equations")
\{(s_1, t_1), (s_2, t_2), \ldots, (s_n, t_n)\}
(the **unification problem**) does there exist
a substitution \(\sigma\) (the **unification solution**) of terms for variables such that
\[\sigma(s_i) = \sigma(t_i),\]
for all \(i = 1, \ldots, n\)?
Uses for Unification

- Type Inference and type checking
- Pattern matching as in OCaml
 - Can use a simplified version of algorithm
- Logic Programming - Prolog
- Simple parsing
Unification Algorithm

- Let $S = \{(s_1 = t_1), (s_2 = t_2), ..., (s_n = t_n)\}$ be a unification problem.

- Case $S = \{\}$: $\text{Unif}(S) =$ Identity function (i.e., no substitution)

- Case $S = \{(s, t)\} \cup S'$: Four main steps
Unification Algorithm

- **Delete:** if $s = t$ (they are the same term) then $\text{Unif}(S) = \text{Unif}(S')$

- **Decompose:** if $s = f(q_1, \ldots , q_m)$ and $t = g(r_1, \ldots , r_n)$ if $f = g$, $m = n$, then
 \[\text{Unif}(S) = \text{Unif}((q_1, r_1), \ldots , (q_m, r_m)) \cup S')\]
 else **fail**!

- **Orient:** if $t = x$ is a variable, and s is not a variable, $\text{Unif}(S) = \text{Unif} ((x = s) \cup S')$
Eliminate: if $s = x$ is a variable, then if x does not occur in t (the occurs check), then

- Let $\varphi = \{x \rightarrow t\}$
 - $\text{Unif}(S) = \text{Unif}(\varphi(S')) \circ \{x \rightarrow t\}$
- Let $\psi = \text{Unif}(\varphi(S'))$
- $\text{Unif}(S) = \{x \rightarrow \psi(t)\} \circ \psi$

Note: $\{x \rightarrow a\} \circ \{y \rightarrow b\} = \{y \rightarrow ((\{x \rightarrow a\}(b)))\} \circ \{x \rightarrow a\}$ if y not in a

else fail (because of occurs check failure)
Tricks for Efficient Unification

- Don’t return substitution, rather do it incrementally
- Make substitution be constant time
 - Requires implementation of terms to use mutable structures (or possibly lazy structures)
 - We won’t discuss these
Example

- x, y, z variables, f, g constructors

- Unify \{ \((f(x) = f(g(f(z),y)))\), \((g(y,y) = x)\)\} = \?
Example

- x, y, z variables, f, g constructors
- $S = \{ (f(x) = f(g(f(z), y))), (g(y, y) = x) \}$ is nonempty

Unify $\{ (f(x) = f(g(f(z), y))), (g(y, y) = x) \} = \ ?$
Example

- x,y,z variables, f,g constructors
- Pick a pair: $(g(y,y) = x)$

- Unify $\{(f(x) = f(g(f(z),y))), (g(y,y) = x)\} = ?$
Example

- x,y,z variables, f,g constructors
- Pick a pair: $(g(y,y)) = x$
- Orient: $(x = g(y,y))$

Unify $\{(f(x) = f(g(f(z),y))), (g(y,y) = x)\} =$

Unify $\{(f(x) = f(g(f(z),y))), (x = g(y,y))\}$

by Orient
Example

- x,y,z variables, f,g constructors

Unify \{(f(x) = f(g(f(z),y))), (x = g(y,y))\} = ?
Example

- x, y, z variables, f, g constructors
- $\{ (f(x) = f(g(f(z),y))), (x = g(y,y)) \}$ is non-empty

Unify $\{ (f(x) = f(g(f(z),y))), (x = g(y,y)) \} = ?$
Example

- x, y, z variables, f, g constructors
- Pick a pair: $(x = g(y,y))$

- Unify \{$(f(x) = f(g(f(z),y))), (x = g(y,y))$\} $=$?
Example

- x,y,z variables, f,g constructors
- Pick a pair: $(x = g(y,y))$
- Eliminate x with substitution $\{x \rightarrow g(y,y)\}$
 - Check: x not in $g(y,y)$
- Unify $\{(f(x) = f(g(f(z),y))), (x = g(y,y))\} = ?$
Example

- x, y, z variables, f, g constructors
- Pick a pair: $(x = g(y, y))$
- Eliminate x with substitution $\{x \rightarrow g(y, y)\}$

Unify $\{(f(x) = f(g(f(z), y))), (x = g(y, y))\} = \{\}

Unify $\{(f(g(y, y)) = f(g(f(z), y)))\}

$\circ \{x \rightarrow g(y, y)\}$
Example

- x, y, z variables, f, g constructors

- Unify $\{ (f(g(y,y)) = f(g(f(z),y))) \}$

 $o \{ x \rightarrow g(y,y) \} = ?$
Example

- \(x, y, z \) variables, \(f, g \) constructors
- \(\{ (f(g(y,y)) = f(g(f(z),y))) \} \) is non-empty

- Unify \(\{ (f(g(y,y)) = f(g(f(z),y))) \} \)
 \(o \) \{ \(x \rightarrow g(y,y) \) \} = ?
Example

- x, y, z variables, f, g constructors
- Pick a pair: $(f(g(y,y)) = f(g(f(z),y)))$

- Unify $\{(f(g(y,y)) = f(g(f(z),y)))\}$
 - $\{x \mapsto g(y,y)\} = ?$
Example

- x, y, z variables, f, g constructors
- Pick a pair: $(f(g(y,y)) = f(g(f(z),y)))$
- Decompose: $(f(g(y,y)) = f(g(f(z),y)))$
 becomes $\{(g(y,y) = g(f(z),y))\}$

- Unify $\{(f(g(y,y)) = f(g(f(z),y)))\}$
 o $\{x \mapsto g(y,y)\} =$
- Unify $\{(g(y,y) = g(f(z),y))\}$ o $\{x \mapsto g(y,y)\}$
Example

- x, y, z variables, f, g constructors
- $\{(g(y,y) = g(f(z),y))\}$ is non-empty

- Unify $\{(g(y,y) = g(f(z),y))\}$ o $\{x \mapsto g(y,y)\} = ?$
Example

- x,y,z variables, f,g constructors
- Pick a pair: $(g(y,y) = g(f(z),y))$

- Unify $$\{(g(y,y) = g(f(z),y))\}$$
 $o \{x \rightarrow g(y,y)\} =$?
Example

- \(x, y, z\) variables, \(f, g\) constructors
- Pick a pair: \((f(g(y, y)) = f(g(f(z), y)))\)
- Decompose: \((g(y, y)) = g(f(z), y))\) becomes
 \(\{(y = f(z)); (y = y)\}\)

- Unify \(\{(g(y, y) = g(f(z), y))\} \circ \{x \rightarrow g(y, y)\} = \)
 \(\text{Unify } \{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y, y)\}\)
Example

- x, y, z variables, f, g constructors

- Unify \{(y = f(z)); (y = y)\} \circ \{x \mapsto g(y, y)\} = ?
Example

- x, y, z variables, f, g constructors
- $\{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y, y)\}$ is non-empty
- Unify $\{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y, y)\} = ?$
Example

- x,y,z variables, f,g constructors
- Pick a pair: $(y = f(z))$

Unify $\{(y = f(z)); (y = y)\} \circ \{x \mapsto g(y,y)\} = ?$
Example

- x, y, z variables, f, g constructors
- Pick a pair: (y = f(z))
- Eliminate y with \{y → f(z)\}
- Unify \{(y = f(z)); (y = y)\} o \{x→ g(y,y)\} =
 Unify \{(f(z) = f(z))\}
 o \{y → f(z)\} o \{x→ g(y,y)\} =
 Unify \{(f(z) = f(z))\}
 o \{y → f(z); x→ g(f(z), f(z))\}
Example

- \(x, y, z \) variables, \(f, g \) constructors

- Unify \(\{(f(z) = f(z))\} \)

 \[o \{y \rightarrow f(z); \ x \rightarrow g(f(z), f(z))\} = ? \]
Example

- x, y, z variables, f, g constructors
- $\{(f(z) = f(z))\}$ is non-empty

- Unify $\{(f(z) = f(z))\}$
 $\circ \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\} = ?$
Example

- x, y, z variables, f, g constructors
- Pick a pair: $(f(z) = f(z))$

- Unify $\{(f(z) = f(z))\}$
 - $o \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\} = ?$
Example

- x, y, z variables, f, g constructors
- Pick a pair: (f(z) = f(z))
- Delete
- Unify {((f(z) = f(z)))}
 \[\circ \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\} = \]
- Unify {} \circ \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\}
Example

- x, y, z variables, f, g constructors

- Unify \{\} \circ \{y \mapsto f(z); x \mapsto g(f(z), f(z))\} = ?
Example

- x, y, z variables, f, g constructors
- $\{\}$ is empty
- $\text{Unify } \{\} = \text{identity function}$
- $\text{Unify } \{\} \circ \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\} = \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\}$
Example

Unify \{(f(x) = f(g(f(z),y))), (g(y,y) = x)\} = \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\}

\[
f(x) = f(g(f(z), y))
\]
\[
\rightarrow f(g(f(z), f(z))) = f(g(f(z), f(z)))
\]

\[
g(y, y) = x
\]
\[
\rightarrow g(f(z), f(z)) = g(f(z), f(z))
\]
Example of Failure: Decompose

- Unify\{(f(x,g(y)) = f(h(y),x))\}
- Decompose: \((f(x,g(y)) = f(h(y),x))\)
- &= Unify \{\(x = h(y)\), \(g(y) = x\)\}
- Orient: \((g(y) = x)\)
- &= Unify \{\(x = h(y)\), \(x = g(y)\)\}
- Eliminate: \((x = h(y))\)
- Unify \{(h(y) = g(y))\} o \{x \rightarrow h(y)\}
- Decompose only rule in this case, but Decompose fails!
Example of Failure: Occurs Check

- Unify\{((f(x,g(x)) = f(h(x),x)))\}
- Decompose: \((f(x,g(x)) = f(h(x),x))\)
- = Unify \{(x = h(x)), (g(x) = x)\}
- Orient: \((g(x) = x)\)
- = Unify \{(x = h(x)), (x = g(x))\}
- Eliminate only rule that applies in this case, but Eliminate fails because the occurs check fails.