Background for Unification

- Terms made from constructors and variables (for the simple first order case)
- Constructors may be applied to arguments (other terms) to make new terms
- Variables and constructors with no arguments are base cases
- Constructors applied to different number of arguments (arity) considered different
- Substitution of terms for variables

Simple Implementation Background

type term = Variable of string |
| Const of (string * term list)

let x = Variable “a”; let tm = Const (“2”,[]);

let rec subst var_name residue term =
 match term with
 | Variable name ->
 if var_name = name then residue else term
 | Const (c, tys) ->
 Const (c, List.map (subst var_name residue) tys);

Unification Problem

Given a set of pairs of terms (“equations”) {(s_1, t_1), (s_2, t_2), ..., (s_n, t_n)}
(the unification problem) does there exist a substitution σ (the unification solution)
of terms for variables such that
σ(s_i) = σ(t_i), for all i = 1, ..., n?

Uses for Unification

- Type Inference and type checking
- Pattern matching as in OCaml
- Can use a simplified version of algorithm
- Logic Programming - Prolog
- Simple parsing

Unification Algorithm

Let S = {(s_1 = t_1), (s_2 = t_2), ..., (s_n = t_n)} be a unification problem.

- Case S = {}: Unif(S) = Identity function (i.e., no substitution)
- Case S = {(s, t)} ∪ S': Four main steps
Unification Algorithm

- **Delete:** if \(s = t \) (they are the same term) then \(\text{Unif}(S) = \text{Unif}(S') \)
- **Decompose:** if \(s = f(q_1, \ldots, q_m) \) and \(t = g(r_1, \ldots, r_n) \) if \(f = g, m = n \), then \(\text{Unif}(S) = \text{Unif} \left(\{(q_1, r_1), \ldots, (q_m, r_n)\} \cup S' \right) \) else **fail**!
- **Orient:** if \(t = x \) is a variable, and \(s \) is not a variable, \(\text{Unif}(S) = \text{Unif} \left(\{(x = s)\} \cup S' \right) \)

Eliminate: if \(s = x \) is a variable, then if \(x \) does not occur in \(t \) (the occurs check), then

- Let \(\psi = \{x \rightarrow t\} \)
 - \(\text{Unif}(S) = \text{Unif}(\psi(S')) \circ \{x \rightarrow t\} \)
- Let \(\psi = \text{Unif}(\psi(S')) \)
 - \(\text{Unif}(S) = \{x \rightarrow \psi(t)\} \circ \psi \)
 - Note: \(\{x \rightarrow a\} \circ \{y \rightarrow b\} = \{y \rightarrow (\{x \rightarrow a\}(b))\} \circ \{x \rightarrow a\} \) if \(y \) not in \(a \)
 - else **fail** (because of occurs check failure)

Tricks for Efficient Unification

- Don’t return substitution, rather do it incrementally
- Make substitution be constant time
 - Requires implementation of terms to use mutable structures (or possibly lazy structures)
 - We won’t discuss these

Example

- \(x,y,z \) variables, \(f,g \) constructors
 - \(\text{Unify} \{\{f(x) = f(g(f(z),y))\}, \{g(y,y) = x\}\} = \) ?

Example

- \(x,y,z \) variables, \(f,g \) constructors
 - \(S = \{\{f(x) = f(g(f(z),y))\}, \{g(y,y) = x\}\} \) is nonempty
 - \(\text{Unify} \{\{f(x) = f(g(f(z),y))\}, \{g(y,y) = x\}\} = ? \)

Example

- \(x,y,z \) variables, \(f,g \) constructors
 - Pick a pair: \(\{g(y,y) = x\} \)
 - \(\text{Unify} \{\{f(x) = f(g(f(z),y))\}, \{g(y,y) = x\}\} = ? \)
Example
- x,y,z variables, f,g constructors
- Pick a pair: $(g(y,y)) = x)$
- Orient: $(x = g(y,y))$
- Unify \{(f(x) = f(g(f(z),y))), (g(y,y) = x))\} =
 \text{Unify } \{(f(x) = f(g(f(z),y))), (x = g(y,y))\}$
 by Orient

Example
- x,y,z variables, f,g constructors
- Pick a pair: $(x = g(y,y))$
- Unify \{(f(x) = f(g(f(z),y))), (x = g(y,y))\} = ?$

Example
- x,y,z variables, f,g constructors
- $(f(x) = f(g(f(z),y))), (x = g(y,y))$ is non-empty
- Unify \{(f(x) = f(g(f(z),y))), (x = g(y,y))\} = ?$

Example
- x,y,z variables, f,g constructors
- Pick a pair: $(x = g(y,y))$
- Eliminate x with substitution \{$x{\mapsto}g(y,y)$\}
- Check: x not in $g(y,y)$
- Unify \{(f(x) = f(g(f(z),y))), (x = g(y,y))\} = ?$

Example
- x,y,z variables, f,g constructors
- Pick a pair: $(x = g(y,y))$
- Eliminate x with substitution \{$x{\mapsto}g(y,y)$\}
- Unify \{(f(x) = f(g(f(z)),y)), (x = g(y,y))\} =
 \text{Unify } \{(f(g(y,y)) = f(g(f(z),y)))\}
 \circ \{x{\mapsto}g(y,y)\}$
Example

- x, y, z variables, f, g constructors
- Unify $\{(f(g(y,y)) = f(g(f(z),y)))\}$
 o $\{x \rightarrow g(y,y)\} = ?$

Example

- x, y, z variables, f, g constructors
- $\{(f(g(y,y)) = f(g(f(z),y)))\}$ is non-empty
 o $\{x \rightarrow g(y,y)\} = ?$

Example

- x, y, z variables, f, g constructors
- Pick a pair: $(f(g(y,y)) = f(g(f(z),y)))$
- Unify $\{(f(g(y,y)) = f(g(f(z),y)))\}$
 o $\{x \rightarrow g(y,y)\} = ?$

Example

- x, y, z variables, f, g constructors
- Pick a pair: $(f(g(y,y)) = f(g(f(z),y)))$
- Decompose: $(f(g(y,y)) = f(g(f(z),y)))$
 becomes $\{(g(y,y) = g(f(z),y))\}$
 o $\{x \rightarrow g(y,y)\} = ?$
 Unify $\{(g(y,y) = g(f(z),y))\}$
 o $\{x \rightarrow g(y,y)\} = ?$

Example

- x, y, z variables, f, g constructors
- $\{(g(y,y) = g(f(z),y))\}$ is non-empty
- Unify $\{(g(y,y) = g(f(z),y))\}$
 o $\{x \rightarrow g(y,y)\} = ?$

Example

- x, y, z variables, f, g constructors
- Pick a pair: $(g(y,y) = g(f(z),y))$
- Unify $\{(g(y,y) = g(f(z),y))\}$
 o $\{x \rightarrow g(y,y)\} = ?$
Example

- x,y,z variables, f,g constructors
- Pick a pair: $(f(g(y,y)) = f(g(f(z),y)))$
- Decompose: $(g(y,y)) = g(f(z),y))$ becomes
 $(y = f(z)); (y = y)$

 Unify $((g(y,y) = g(f(z),y))) \circ \{x \rightarrow g(y,y)\} = $
 Unify $\{y = f(z)\}; (y = y) \circ \{x \rightarrow g(y,y)\}$

Example

- x,y,z variables, f,g constructors
- $(y = f(z))$

 Unify $\{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y,y)\} = ?$

Example

- x,y,z variables, f,g constructors
- $\{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y,y)\}$ is non-empty

 Unify $\{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y,y)\} = ?$

Example

- x,y,z variables, f,g constructors
- Pick a pair: $(y = f(z))$

 Unify $\{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y,y)\} = ?$

Example

- x,y,z variables, f,g constructors
- Pick a pair: $(y = f(z))$
- Eliminate y with $\{y \rightarrow f(z)\}$

 Unify $\{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y,y)\} = $
 Unify $\{(f(z) = f(z))$

 o $\{y \rightarrow f(z)\} \circ \{x \rightarrow g(y,y)\}$=
 Unify $\{(f(z) = f(z))$

 o $\{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\}$

Example

- x,y,z variables, f,g constructors

 Unify $\{(f(z) = f(z))$

 o $\{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\} = ?$
Example

- \(x, y, z\) variables, \(f, g\) constructors
- \(\{(f(z) = f(z))\}\) is non-empty
- Unify \(\{(f(z) = f(z))\}\)
 o \(\{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\}\) = ?

Example

- \(x, y, z\) variables, \(f, g\) constructors
- Pick a pair: \((f(z) = f(z))\)
- Unify \(\{(f(z) = f(z))\}\)
 o \(\{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\}\) = ?

Example

- \(x, y, z\) variables, \(f, g\) constructors
- Pick a pair: \((f(z) = f(z))\)
- Delete
- Unify \(\{(f(z) = f(z))\}\)
 o \(\{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\}\) = ?

Example

- \(x, y, z\) variables, \(f, g\) constructors
 - \(\{\}\) is empty
 - Unify \(\{\}\) = identity function
 - Unify \(\{\}\) o \(\{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\}\) =
 \(\{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\}\)

Example

- Unify \(\{(f(x) = f(g(f(z), y))), (g(y, y) = x)\}\) =
 \(\{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\}\)
 \(f(\ x \quad) = f(g(f(z), y))\)
 \(\rightarrow f(g(f(z), f(z))) = f(g(f(z), f(z)))\)
 \(g(y, y) = x\)
 \(\rightarrow g(f(z), f(z)) = g(f(z), f(z))\)
Example of Failure: Decompose

- Unify\(\{(f(x, g(y)) = f(h(y), x))\}\)
- Decompose: \(\{(f(x, g(y)) = f(h(y), x))\}\)
- = Unify \(\{(x = h(y)), (g(y) = x)\}\)
- Orient: \(g(y) = x\)
- Orient \(\{(x = h(y)), (x = g(y))\}\)
- Eliminate only rule that applies in this case, but Decompose fails!

Example of Failure: Occurs Check

- Unify \(\{(f(x, g(x)) = f(h(x), x))\}\)
- Decompose: \(\{(f(x, g(x)) = f(h(x), x))\}\)
- = Unify \(\{(x = h(x)), (g(x) = x)\}\)
- Orient: \(g(x) = x\)
- Eliminate only rule that applies in this case, but Eliminate fails because the occurs check fails.