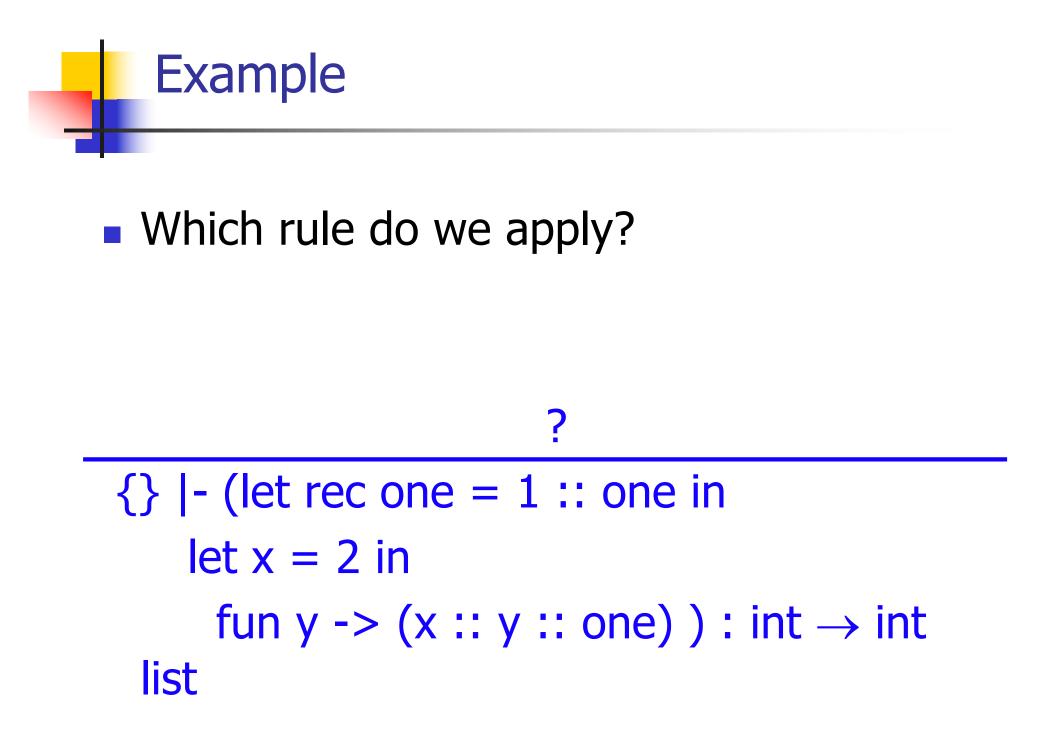
Programming Languages and Compilers (CS 421)

Elsa L Gunter 2112 SC, UIUC

https://courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha



Example

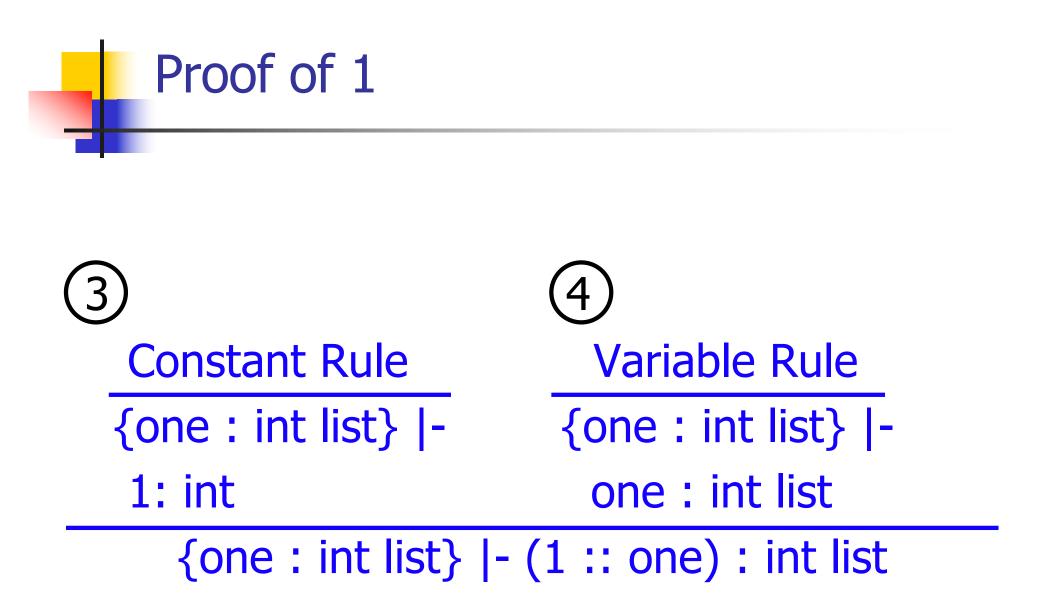
(2) {one : int list} |-Let rec rule: (let x = 2 in)fun y -> (x :: y :: one)) {one : int list} |-(1 :: one) : int list : int \rightarrow int list $\{\} | - (\text{let rec one} = 1 :: \text{one in})$ let x = 2 in fun y -> (x :: y :: one)) : int \rightarrow int list

Which rule?

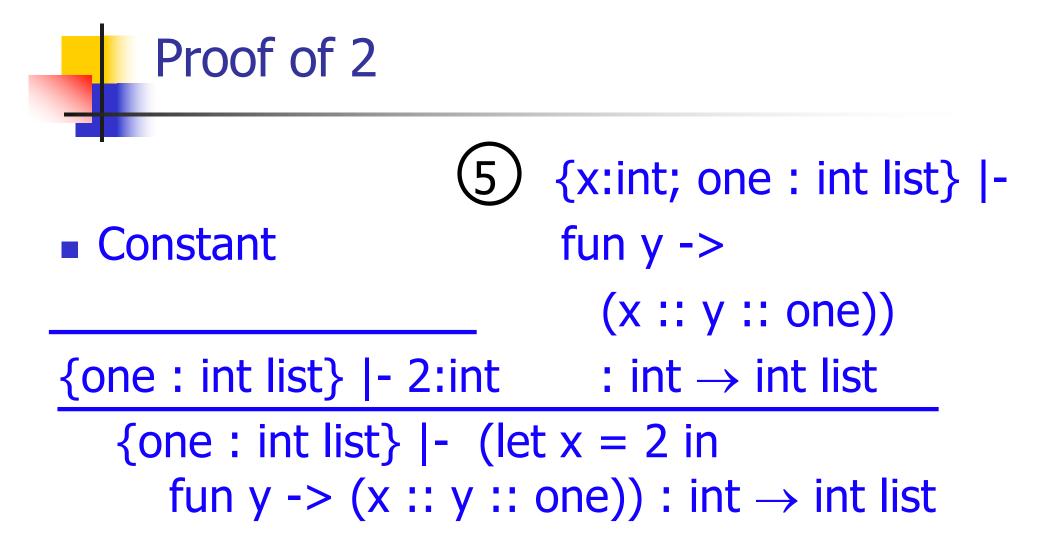
{one : int list} |- (1 :: one) : int list

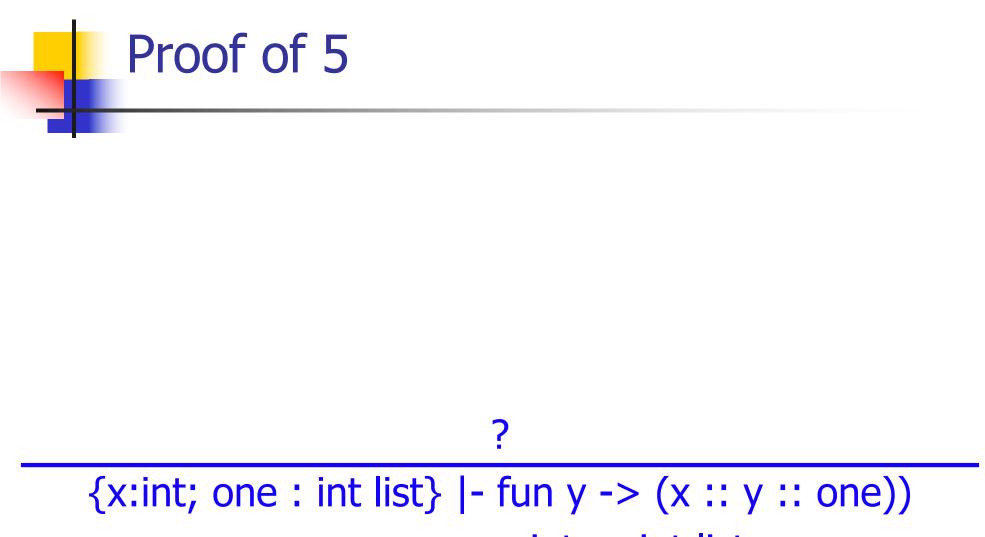
3 (4) {one : int list} |- {one : int list} |-1: int one : int list {one : int list} |- (1 :: one) : int list

where (::) : int \rightarrow int list \rightarrow int list

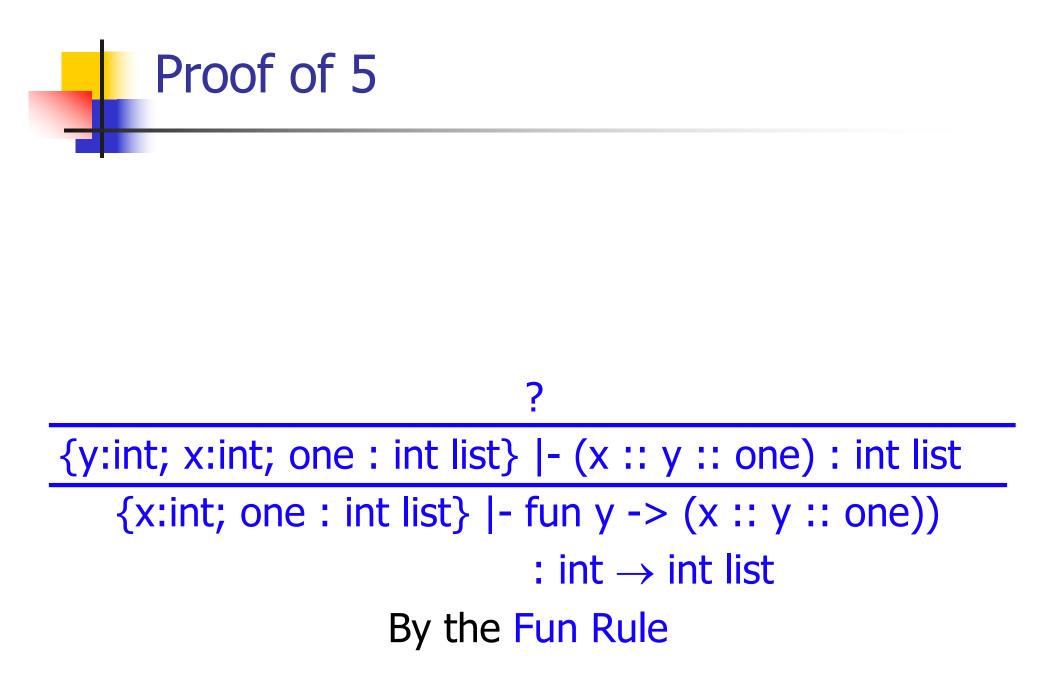


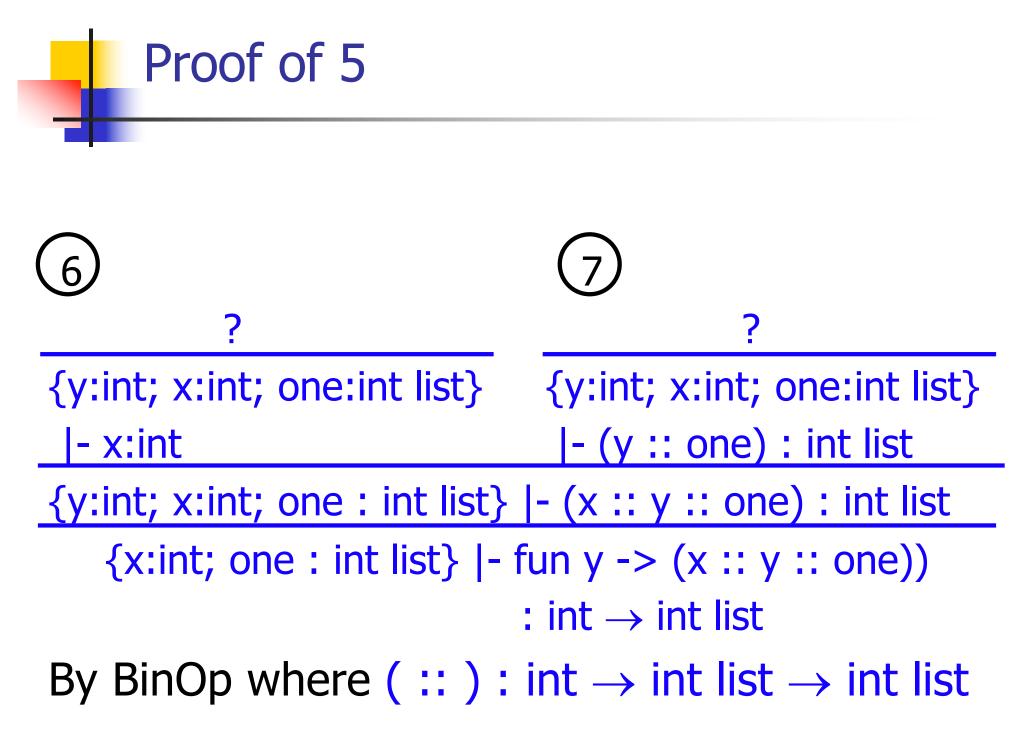
Proof of 2 Let Rule {x:int; one : int list} |fun y -> (x :: y :: one)) $\{\text{one : int list}\} \mid -2:\text{int} : \text{int} \rightarrow \text{int list} \}$ $\{\text{one}: \text{int list}\} \mid - (\text{let } x = 2 \text{ in})$ fun y -> (x :: y :: one)) : int \rightarrow int list

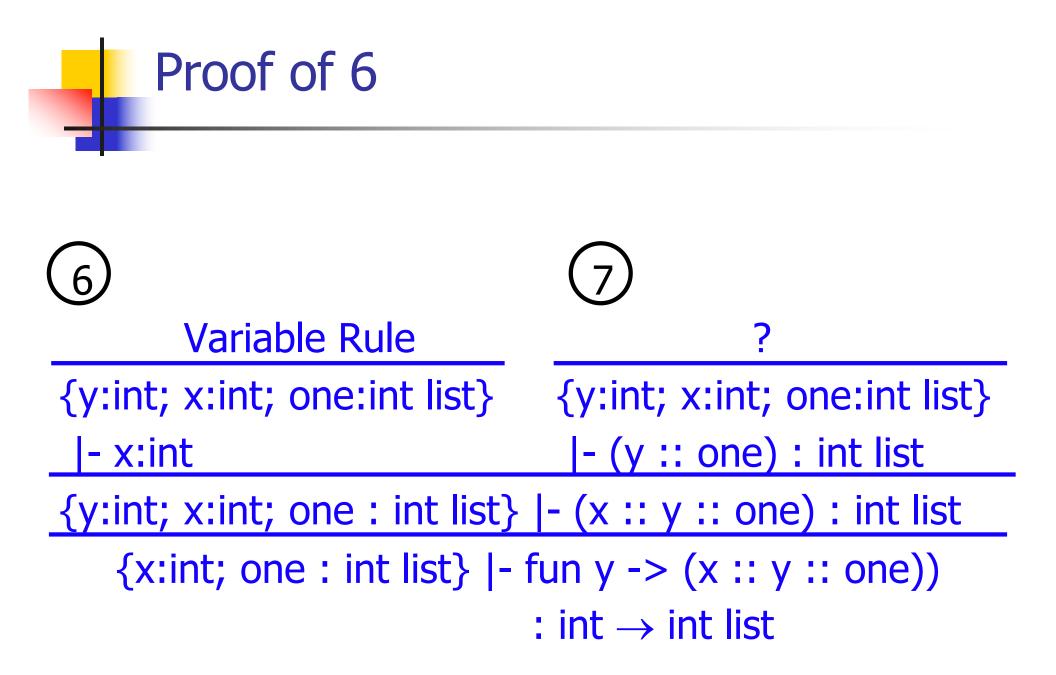


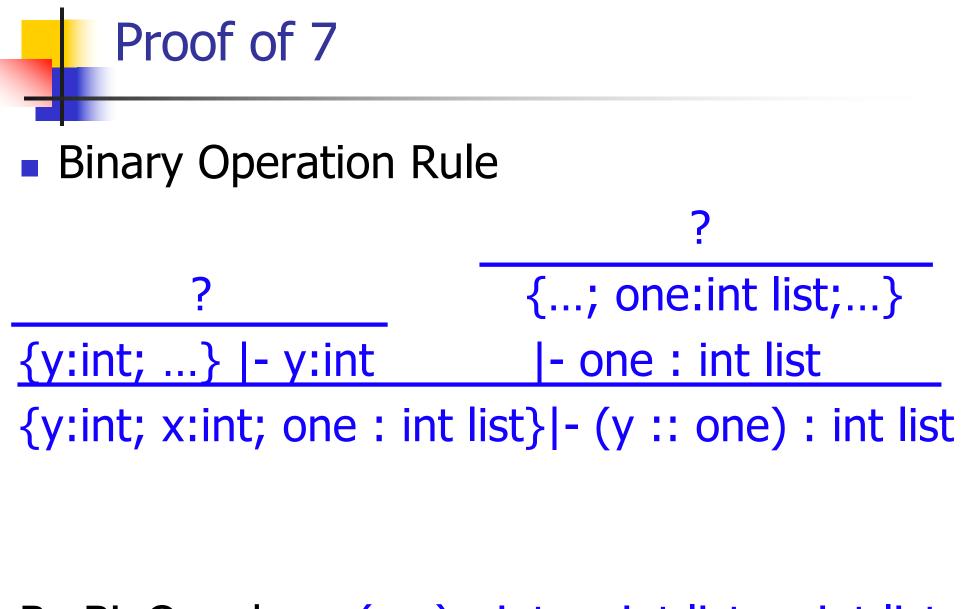


: int \rightarrow int list









By BinOp where (::) : int \rightarrow int list \rightarrow int list

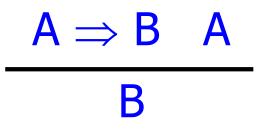
Proof of 7	
	Variable Rule
Variable Rule	<pre>{; one:int list;}</pre>
{y:int;} - y:int	- one : int list
{y:int; x:int; one : int	: list} - (y :: one) : int list

Curry - Howard Isomorphism

- Type Systems are logics; logics are type systems
- Types are propositions; propositions are types
- Terms are proofs; proofs are terms

 Function space arrow corresponds to implication; application corresponds to modus ponens

Modus Ponens



• Application $\Gamma \mid -e_1 : \alpha \to \beta \quad \Gamma \mid -e_2 : \alpha$ $\Gamma \mid -(e_1 e_2) : \beta$

Mea Culpa

- The above system can't handle polymorphism as in OCAML
- No type variables in type language (only metavariables in the logic)
- Would need:
 - Object level type variables and some kind of type quantification
 - Iet and let rec rules to introduce polymorphism
 - Explicit changes to rules to eliminate (instantiate) polymorphism

Support for Polymorphic Types

- Monomorpic Types (τ):
 - Basic Types: int, bool, float, string, unit, ...
 - Type Variables: α , β , γ , δ , ε
 - Compound Types: $\alpha \rightarrow \beta$, int * string, bool list, ...
- Polymorphic Types:
 - Monomorphic types τ
 - Universally quantified monomorphic types
 - ∀α₁, ..., α_n. τ
 - Can think of τ as same as $\forall \cdot \tau$

Support for Polymorphic Types

- Free variables of monomorphic type just type variables that occur in it
 - Write FreeVars(τ)
- Free variables of polymorphic type removes variables that are universally quantified
 - FreeVars($\forall \alpha_1, \dots, \alpha_n \cdot \tau$) = FreeVars(τ) { $\alpha_1, \dots, \alpha_n$ }
- FreeVars(Γ) = all FreeVars of types in range of Γ

Example FreeVars Calculations

Vars('a -> (int -> 'b) -> 'a) = {'a , 'b} FreeVars (All 'b. 'a -> (int -> 'b) -> 'a) = $\{a, b\} - \{b\} = \{a\}$ FreeVars {x : All `b. <u>`a</u> -> (int -> `b) -> <u>`a</u>, id: All `c. `c -> `c, y: All 'c. 'a -> 'b -> 'c} = ${a} U {} U {} a, b = {a, b}$