Programming Languages and Compilers (CS 421)

Elsa L Gunter 2112 SC, UIUC

 https://courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

Why Data Types?

- Data types play a key role in:
- Data abstraction in the design of programs
- Type checking in the analysis of programs
- Compile-time code generation in the translation and execution of programs
- Data layout (how many words; which are data and which are pointers) dictated by type

Terminology

- Type: A type t defines a set of possible data values
- E.g. short in C is $\left\{x \mid 2^{15}-1 \geq x \geq-2^{15}\right\}$
- A value in this set is said to have type t
- Type system: rules of a language assigning types to expressions

Types as Specifications

- Types describe properties
- Different type systems describe different properties, eg
- Data is read-write versus read-only
- Operation has authority to access data
- Data came from "right" source
- Operation might or could not raise an exception
- Common type systems focus on types describing same data layout and access methods

Sound Type System

- If an expression is assigned type t, and it evaluates to a value v, then v is in the set of values defined by t
- SML, OCAML, Scheme and Ada have sound type systems
- Most implementations of C and C++ do not

Strongly Typed Language

- When no application of an operator to arguments can lead to a run-time type error, language is strongly typed - Eg: 1 + 2.3;;
- Depends on definition of "type error"

Strongly Typed Language

- C++ claimed to be "strongly typed", but - Union types allow creating a value at one type and using it at another
- Type coercions may cause unexpected (undesirable) effects
- No array bounds check (in fact, no runtime checks at all)
- SML, OCAML "strongly typed" but still must do dynamic array bounds checks, runtime type case analysis, and other checks

Static vs Dynamic Types

- Static type: type assigned to an expression at compile time
- Dynamic type: type assigned to a storage location at run time
- Statically typed language: static type assigned to every expression at compile time
- Dynamically typed language: type of an expression determined at run time

Type Checking

- When is op(arg1,...,argn) allowed?
- Type checking assures that operations are applied to the right number of arguments of the right types
- Right type may mean same type as was specified, or may mean that there is a predefined implicit coercion that will be applied
- Used to resolve overloaded operations

Type Checking

- Type checking may be done statically at compile time or dynamically at run time
- Dynamically typed (aka untyped) languages (eg LISP, Prolog) do only dynamic type checking
- Statically typed languages can do most type checking statically

Dynamic Type Checking

- Performed at run-time before each operation is applied
- Types of variables and operations left unspecified until run-time
- Same variable may be used at different types

Dynamic Type Checking

- Data object must contain type information
- Errors aren't detected until violating application is executed (maybe years after the code was written)

Static Type Checking

- Performed after parsing, before code generation
- Type of every variable and signature of every operator must be known at compile time

Static Type Checking

- Can eliminate need to store type information in data object if no dynamic type checking is needed
- Catches many programming errors at earliest point
- Can' t check types that depend on dynamically computed values
- Eg: array bounds

Static Type Checking

- Typically places restrictions on languages
- Garbage collection
- References instead of pointers
- All variables initialized when created
- Variable only used at one type
- Union types allow for work-arounds, but effectively introduce dynamic type checks

Type Inference

- Type derivation : A formal proof that a term has a type,
- assuming types for variables
- using the rules of a type system
- Type checking: A program to analyze code
- Confirms terms in the code have needed types according to the type system
- Assures type derivations exist

Type Declarations

- Type declarations: explicit assignment of types to variables (signatures to functions) in the code of a program
- Must be checked in a strongly typed language
- Often not necessary for strong typing or even static typing (depends on the type system)

Type Inference

- Type inference: A program analysis to assign a type to an expression from the program context of the expression
- Fully static type inference first introduced by Robin Miller in ML
- Haskle, OCAML, SML all use type inference
- Records are a problem for type inference

Format of Type Judgments

- A type judgement has the form

$$
\Gamma \mid-\exp : \tau
$$

- Γ is a typing environment
- Supplies the types of variables (and function names when function names are not variables)
- Γ is a set of the form $\{x: \sigma, \ldots\}$
- For any x at most one σ such that ($x: \sigma \in \Gamma$)
- exp is a program expression
- τ is a type to be assigned to exp
- |- pronounced "turnstyle", or "entails" (or "satisfies" or, informally, "shows")

Axioms - Constants (Monomorphic)

$\Gamma \mid-n$: int (assuming n is an integer constant)

Г |- true : bool
$\Gamma \mid-$ false: bool

- These rules are true with any typing environment
- Γ, n are meta-variables

Axioms - Variables (Monomorphic Rule)

Notation: Let $\Gamma(x)=\sigma$ if $x: \sigma \in \Gamma$ Note: if such σ exits, its unique

Variable axiom:

$$
\Gamma \mid-x: \sigma \quad \text { if } \Gamma(x)=\sigma
$$

Simple Rules - Arithmetic (Mono)

Primitive Binary operators ($\oplus \in\{+,-, *, \ldots\}$):

$$
\frac{\Gamma \mid-e_{1}: \tau_{1} \frac{\Gamma \mid-e_{2}: \tau_{2}(\oplus): \tau_{1} \rightarrow \tau_{2} \rightarrow \tau_{3}}{\Gamma \mid-e_{1} \oplus e_{2}: \tau_{3}}}{\frac{\Gamma}{}}
$$

Special case: Relations ($\sim_{\in\{<,>,=,<=,>=\}}$):

$$
\frac{\Gamma\left|-e_{1}: \tau \Gamma\right|-e_{2}: \tau \quad(\sim): \tau \rightarrow \tau \rightarrow \text { bool }}{\Gamma \mid-e_{1} \sim e_{2}: \text { bool }}
$$

For the moment, think τ is int

Example: $\{x:$ int $\} \mid-x+2$ = 3 :bool

What do we need to show first?
$\{x$:int $\} \mid-x+2=3$: bool

Example: $\{x:$ int $\} \mid-x+2=3$:bool

What do we need for the left side?
$\frac{\{x: \text { int }\} \mid-x+2: \text { int }\{x: \text { int }\} \mid-3: \text { int }}{\{x: \text { int }\} \mid-x+2=3: \text { bool }}$

Example: $\{x:$ int $\} \mid-x+2=3$:bool

How to finish?
\{x:int\} |- x:int \{x:int\} |- 2:int
\{x: int $\} \mid-x+2:$ int
$\frac{\{x: \text { int }\} \mid-3: i n t}{\text { bool }}$

Example: $\{x:$ int $\} \mid-x+2=3$:bool

Complete Proof (type derivation)
$\frac{\frac{\text { Var }}{\{x: \text { int }\} \mid-x: \text { int }} \frac{\text { Const }}{\{x: \text { int }\} \mid-2: \text { int }}}{\frac{\{x: \text { int }\} \mid-x+2: \text { int }}{\{x: \text { int }\} \mid-x+2=3: \text { bool }} \frac{\text { Const }}{\{x: 3: \text { int }}}$

Simple Rules - Booleans

Connectives

$$
\begin{aligned}
& \frac{\Gamma \mid-e_{1}: \text { bool } \quad \Gamma \mid-e_{2}: \text { bool }}{\Gamma \mid-e_{1} \& \& e_{2}: \text { bool }} \\
& \frac{\Gamma \mid-e_{1}: \text { bool } \quad \Gamma \mid-e_{2}: \text { bool }}{\Gamma\left|-e_{1}\right| \mid e_{2}: \text { bool }}
\end{aligned}
$$

Type Variables in Rules

- If_then_else rule:

$$
\frac{\Gamma \mid-e_{1}: \text { bool } \Gamma\left|-\mathrm{e}_{2}: \tau \Gamma\right|-\mathrm{e}_{3}: \tau}{\Gamma \mid-\left(\text { if } e_{1} \text { then } \mathrm{e}_{2} \text { else } \mathrm{e}_{3}\right): \tau}
$$

- τ is a type variable (meta-variable)
- Can take any type at all
- All instances in a rule application must get same type
- Then branch, else branch and if_then_else must all have same type

Example derivation: if-then-else-

- $\Gamma=\{x:$ int, int_of_float:float -> int, y:float $\}$

$$
\Gamma \mid- \text { (fun y -> }
$$

$$
\begin{array}{ccc}
y>3) x & \Gamma \mid-x+2 & \Gamma \mid- \text { int_of_float } y \\
: \text { bool } & \text { : int } & \text { : int }
\end{array}
$$

$$
\Gamma \mid- \text { if (fun } y->y>3) x
$$

$$
\text { then } x+2
$$

else int_of_float y : int

Function Application

- Application rule:

$$
\frac{\Gamma\left|-e_{1}: \tau_{1} \rightarrow \tau_{2} \Gamma\right|-e_{2}: \tau_{1}}{\Gamma \mid-\left(e_{1} e_{2}\right): \tau_{2}}
$$

- If you have a function expression e_{1} of type $\tau_{1} \rightarrow \tau_{2}$ applied to an argument e_{2} of type τ_{1}, the resulting expression $e_{1} e_{2}$ has type τ_{2}

Example: Application

- Г = \{x:int, int_of_float:float -> int, y:float\}

$$
\begin{aligned}
& \Gamma \mid-(\text { fun } y->y>3) \\
& \quad: \text { int }->\text { bool } \quad \Gamma \mid-x: \text { int }
\end{aligned}
$$

Г |- (fun y -> y > 3) x : bool

Fun Rule

- Rules describe types, but also how the environment Γ may change
- Can only do what rule allows!
- fun rule:

$$
\frac{\left\{x: \tau_{1}\right\}+\Gamma \mid-e: \tau_{2}}{\Gamma \mid- \text { fun } x->e: \tau_{1} \rightarrow \tau_{2}}
$$

Fun Examples

$$
\frac{\{y: \text { int }\}+\Gamma \mid-y+3: \text { int }}{\Gamma \mid- \text { fun } y->y+3: \text { int } \rightarrow \text { int }}
$$

\{f: int \rightarrow bool $\}+$ Г $1-\mathrm{f} 2::$ [true] : Dol list Г |- (fun f-> (f 2) :: [true])
: (int \rightarrow boot) \rightarrow boo list

(Monomorphic) Let and Let Rec

- let rule:

$$
\frac{\Gamma\left|-e_{1}: \tau_{1} \quad\left\{x: \tau_{1}\right\}+\Gamma\right|-e_{2}: \tau_{2}}{\Gamma \mid-\left(\operatorname{let} x=e_{1} \text { in } e_{2}\right): \tau_{2}}
$$

- let rec rule:

$$
\frac{\left\{x: \tau_{1}\right\}+\Gamma\left|-e_{1}: \tau_{1}\left\{x: \tau_{1}\right\}+\Gamma\right|-e_{2}: \tau_{2}}{\Gamma \mid-\left(\text { let rec } x=e_{1} \text { in } e_{2}\right): \tau_{2}}
$$

Example

- Which rule do we apply?
?
\{\} |- (let rec one = $1::$ one in
let $x=2$ in
fun $y->(x:: y::$ one $)):$ int \rightarrow int list

Example

- Let rec rule:
(2) \{one : int list $\}$ (let $x=2$ in
\{one : int list\} |-
(1 :: one) : int list
$\} \mid$ (let rec one $=1::$ one in
let $x=2$ in
fun $y->(x:: y::$ one) $):$ int \rightarrow int list

Proof of 1

- Which rule?
\{one : int list\} |- (1 :: one) : int list

Proof of 1

- Binary Operator
(3)
\{one : int list\} |-
1: int
(4)
\{one : int list\} |one : int list
\{one : int list\} |- (1 :: one) : int list
where (: :) : int \rightarrow int list \rightarrow int list

Proof of 1

(3)

Constant Rule

\{one : int list\} |-
1: int
(4)

Variable Rule
\{one: int list\} |one : int list
\{one : int list\} |- (1 :: one) : int list

Proof of 2

- Let Rule
\{x:int; one : int list\} |-
fun y->

> (x :: y :: one))
\{one : int list $\}$ - 2: int $\quad:$ int \rightarrow int list \{one : int list ${ }^{\mid-}$(let $x=2$ in
fun $y->(x:: y ~:: ~ o n e)):$ int \rightarrow int list

Proof of 2

(5) $\{x:$ int; one : int list $\}$ |-

- Constant fun y->
(x :: y :: one))
\{one : int list\} |- 2:int $\quad:$ int \rightarrow int list \{one : int list |- (let $x=2$ in
fun y-> (x :: y :: one)) : int \rightarrow int list

Proof of 5

?
 \{x:int; one : int list\} |- fun y -> (x :: y :: one))
 : int \rightarrow int list

Proof of 5

?
$\underline{\{y: i n t ;} x:$ int; one : int list $\} \mid-(x:: y$:: one) : int list \{x:int; one : int list\} |- fun y -> (x :: y :: one))
: int \rightarrow int list
By the Fun Rule

Proof of 5

(7)

?

\{y:int; x:int; one:int list\}

- x:int
\{y:int; x:int; one : int list\} |- (x :: y :: one) : int list \{x:int; one : int list\} |- fun y -> (x :: y :: one)) : int \rightarrow int list
By BinOp where (: :) : int \rightarrow int list \rightarrow int list

Proof of 6

(7)

Variable Rule
\{y:int; x:int; one:int list\} \{y:int; x:int; one:int list\}
ل-x:int - - (y :: one) : int list
 \{x:int; one : int list\} |- fun y -> (x :: y :: one))
: int \rightarrow int list

Proof of 7

- Binary Operation Rule

By BinOp where (: :) : int \rightarrow int list \rightarrow int list

Proof of 7

Variable Rule

Variable Rule

 \{y:int; ...\}|-y:int |- one : int list \{y:int; x:int; one : int list\}|- (y :: one) : int list
Curry - Howard Isomorphism

- Type Systems are logics; logics are type systems
- Types are propositions; propositions are types
- Terms are proofs; proofs are terms
- Function space arrow corresponds to implication; application corresponds to modus ponens

Curry - Howard Isomorphism

- Modus Ponens

$$
\frac{A \Rightarrow B \quad A}{B}
$$

- Application

$$
\frac{\Gamma \mid-e_{1}: \alpha \rightarrow \beta \text { 传 } e_{2}: \alpha}{\Gamma \mid-\left(e_{1} e_{2}\right): \beta}
$$

