Programming Languages and Compilers (CS 421)

Elsa L Gunter 2112 SC, UIUC

https://courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

2/22/23

Why Data Types?

- Data types play a key role in:
 - Data abstraction in the design of programs
 - *Type checking* in the analysis of programs
 - Compile-time code generation in the translation and execution of programs
 - Data layout (how many words; which are data and which are pointers) dictated by type

2/22/23

Terminology

- Type: A type t defines a set of possible data values
 - E.g. short in C is $\{x \mid 2^{15} 1 \ge x \ge -2^{15}\}$
 - A value in this set is said to have type t
- Type system: rules of a language assigning types to expressions

2/22/23

Types as Specifications

- Types describe properties
- Different type systems describe different properties, eq
 - Data is read-write versus read-only
 - Operation has authority to access data
 - Data came from "right" source
 - Operation might or could not raise an exception
- Common type systems focus on types describing same data layout and access methods

2/22/23 4

Sound Type System

- If an expression is assigned type t, and it evaluates to a value v, then v is in the set of values defined by t
- SML, OCAML, Scheme and Ada have sound type systems
- Most implementations of C and C++ do not

4

Strongly Typed Language

- When no application of an operator to arguments can lead to a run-time type error, language is strongly typed
 - Eg: 1 + 2.3;;
- Depends on definition of "type error"

2/22/23

2/22/23

/

Strongly Typed Language

- C++ claimed to be "strongly typed", but
 - Union types allow creating a value at one type and using it at another
 - Type coercions may cause unexpected (undesirable) effects
 - No array bounds check (in fact, no runtime checks at all)
- SML, OCAML "strongly typed" but still must do dynamic array bounds checks, runtime type case analysis, and other checks

2/22/23

Static vs Dynamic Types

- Static type: type assigned to an expression at compile time
- Dynamic type: type assigned to a storage location at run time
- Statically typed language: static type assigned to every expression at compile time
- Dynamically typed language: type of an expression determined at run time

2/22/23 9

Type Checking

- When is op(arg1,...,argn) allowed?
- Type checking assures that operations are applied to the right number of arguments of the right types
 - Right type may mean same type as was specified, or may mean that there is a predefined implicit coercion that will be applied
- Used to resolve overloaded operations

2/22/23

Type Checking

- Type checking may be done statically at compile time or dynamically at run time
- Dynamically typed (aka untyped) languages (eg LISP, Prolog) do only dynamic type checking
- Statically typed languages can do most type checking statically

2/22/23 11

Dynamic Type Checking

- Performed at run-time before each operation is applied
- Types of variables and operations left unspecified until run-time
 - Same variable may be used at different types

10

Dynamic Type Checking

- Data object must contain type information
- Errors aren't detected until violating application is executed (maybe years after the code was written)

2/22/23

12

Static Type Checking

- Performed after parsing, before code generation
- Type of every variable and signature of every operator must be known at compile time

2/22/23

14

Static Type Checking

- Can eliminate need to store type information in data object if no dynamic type checking is needed
- Catches many programming errors at earliest point
- Can't check types that depend on dynamically computed values
 - Eg: array bounds

2/22/23 15

Static Type Checking

- Typically places restrictions on languages
 - Garbage collection
 - References instead of pointers
 - All variables initialized when created
 - Variable only used at one type
 - Union types allow for work-arounds, but effectively introduce dynamic type checks

2/22/23

Type Inference

- Type derivation: A formal proof that a term has a type,
 - assuming types for variables
 - using the rules of a type system
- *Type checking*: A program to analyze code
 - Confirms terms in the code have needed types according to the type system
 - Assures type derivations exist

2/22/23 18

Type Declarations

- Type declarations: explicit assignment of types to variables (signatures to functions) in the code of a program
 - Must be checked in a strongly typed language
 - Often not necessary for strong typing or even static typing (depends on the type system)

2/22/23

19

Type Inference

- Type inference: A program analysis to assign a type to an expression from the program context of the expression
 - Fully static type inference first introduced by Robin Miller in ML
 - Haskle, OCAML, SML all use type inference
 - Records are a problem for type inference

Format of Type Judgments

• A *type judgement* has the form

$$\Gamma$$
 |- exp : τ

- Γ is a typing environment
 - Supplies the types of variables (and function names when function names are not variables)
 - Γ is a set of the form $\{x:\sigma,\ldots\}$
 - For any x at most one σ such that $(x : \sigma \in \Gamma)$
- exp is a program expression
- τ is a type to be assigned to exp
- |- pronounced "turnstyle", or "entails" (or "satisfies" or, informally, "shows")

23

Axioms – Constants (Monomorphic)

 $\Gamma \mid -n : int$ (assuming *n* is an integer constant)

$$\Gamma$$
 |- true : bool Γ |- false : bool

- These rules are true with any typing environment
- Γ, n are meta-variables

2/22/23 22

Axioms – Variables (Monomorphic Rule)

Notation: Let $\Gamma(x) = \sigma$ if $x : \sigma \in \Gamma$ Note: if such σ exits, its unique

Variable axiom:

$$\overline{\Gamma \mid - x : \sigma}$$
 if $\Gamma(x) = \sigma$

2/22/23

23

25

Simple Rules – Arithmetic (Mono)

Primitive Binary operators ($\oplus \in \{+, -, *, ...\}$): $\frac{\Gamma \mid - e_1 : \tau_1 \qquad \Gamma \mid - e_2 : \tau_2 \qquad (\oplus) : \tau_1 \rightarrow \tau_2 \rightarrow \tau_3}{\Gamma \mid - e_1 \oplus e_2 : \tau_3}$

Special case: Relations (~ { < , > , = , <= , >= }):

$$\frac{\Gamma \mid -e_1 : \tau \quad \Gamma \mid -e_2 : \tau \quad (\sim) : \tau \to \tau \to bool}{\Gamma \mid -e_1 \quad \sim \quad e_2 : bool}$$

For the moment, think τ is int

2/22/23 24

Example: $\{x:int\} | -x + 2 = 3 : bool$

What do we need to show first?

$$\{x:int\} \mid -x + 2 = 3 : bool$$

2/22/23

Example: $\{x:int\} | -x + 2 = 3 : bool$

What do we need for the left side?

$$\frac{\{x: int\} \mid -x+2: int \qquad \{x: int\} \mid -3: int \\ \{x: int\} \mid -x+2=3: bool}$$

2/22/23

26

Example: $\{x:int\} | -x + 2 = 3 : bool$

How to finish?

$$\frac{\{x: int\} \mid - x: int \quad \{x: int\} \mid - 2: int}{\{x: int\} \mid - x + 2: int} \frac{Bin}{\{x: int\} \mid - 3: int} \frac{\{x: int\} \mid - x + 2 = 3: bool}{Bin}$$

2/22/23 27

Complete Proof (type derivation)

$$\frac{\text{Var}}{\{x:\text{int}\} \mid -x:\text{int}} \frac{\text{Const}}{\{x:\text{int}\} \mid -2:\text{int}} \frac{\text{Const}}{\{x:\text{int}\} \mid -x+2:\text{int}} \frac{\text{Const}}{\{x:\text{int}\} \mid -3:\text{int}} \frac{\text{Const}}{\{x:\text{int}\} \mid -3:$$

2/22/23 28

Simple Rules - Booleans

Connectives

$$\frac{\Gamma \mid -e_1 : \mathsf{bool} \quad \Gamma \mid -e_2 : \mathsf{bool}}{\Gamma \mid -e_1 \&\& e_2 : \mathsf{bool}}$$

$$\frac{\Gamma \mid -e_1 : \mathsf{bool} \quad \Gamma \mid -e_2 : \mathsf{bool}}{\Gamma \mid -e_1 \mid \mid e_2 : \mathsf{bool}}$$

2/22/23

Type Variables in Rules

If_then_else rule:

$$\frac{\Gamma \mid -e_1 : \text{bool} \quad \Gamma \mid -e_2 : \tau \quad \Gamma \mid -e_3 : \tau}{\Gamma \mid -(\text{if } e_1 \text{ then } e_2 \text{ else } e_3) : \tau}$$

- τ is a type variable (meta-variable)
- Can take any type at all
- All instances in a rule application must get same type
- Then branch, else branch and if_then_else must all have same type

2/22/23 31

Example derivation: if-then-else-

Γ = {x:int, int_of_float:float -> int, y:float}

$$\Gamma$$
 |- (fun y -> y > 3) x Γ |- x+2 Γ |- int_of_float y : bool : int : int

$$\Gamma$$
 |- if (fun y -> y > 3) x
then x + 2
else int_of_float y : int

2/22/23

30

32

Function Application

Application rule:

$$\frac{\Gamma \mid -e_1: \tau_1 \rightarrow \tau_2 \quad \Gamma \mid -e_2: \tau_1}{\Gamma \mid -(e_1 e_2): \tau_2}$$

If you have a function expression e₁ of type τ₁ → τ₂ applied to an argument e₂ of type τ₁, the resulting expression e₁e₂ has type τ₂

Example: Application

Γ = {x:int, int_of_float:float -> int, y:float}

$$\Gamma$$
 |- (fun y -> y > 3)
: int -> bool Γ |- x : int Γ |- (fun y -> y > 3) x : bool

2/22/23

34

37

Fun Rule

- Rules describe types, but also how the environment Γ may change
- Can only do what rule allows!
- fun rule:

$$\frac{\{x \colon \tau_1\} + \Gamma \mid -e \colon \tau_2}{\Gamma \mid -\text{ fun } x \to e \colon \tau_1 \to \tau_2}$$

2/22/23 36

Fun Examples

$$\frac{\{y : int \} + \Gamma \mid -y + 3 : int}{\Gamma \mid -fun \ y -> y + 3 : int \rightarrow int}$$

$$\begin{array}{c} \{f: \mathsf{int} \to \mathsf{bool}\} + \Gamma \mid \mathsf{-f} \ 2:: [\mathsf{true}] : \mathsf{bool} \ \mathsf{list} \\ \Gamma \mid \mathsf{-} (\mathsf{fun} \ \mathsf{f} \ \mathsf{->} \ (\mathsf{f} \ 2) :: [\mathsf{true}]) \\ : (\mathsf{int} \to \mathsf{bool}) \to \mathsf{bool} \ \mathsf{list} \end{array}$$

2/22/23

(Monomorphic) Let and Let Rec

let rule:

$$\frac{\Gamma \mid -e_1 : \tau_1 \quad \{x : \tau_1\} + \Gamma \mid -e_2 : \tau_2}{\Gamma \mid -(\text{let } x = e_1 \text{ in } e_2) : \tau_2}$$

let rec rule:

$$\frac{\{x: \tau_1\} + \Gamma \mid -e_1: \tau_1 \{x: \tau_1\} + \Gamma \mid -e_2: \tau_2}{\Gamma \mid -(\text{let rec } x = e_1 \text{ in } e_2): \tau_2}$$

2/22/23

Example

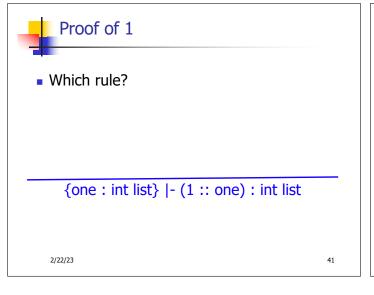
Which rule do we apply?

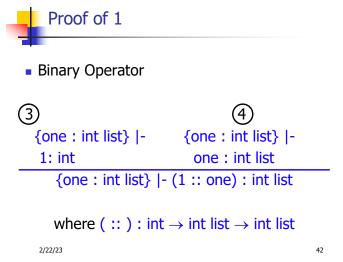
{} |- (let rec one = 1 :: one in let
$$x = 2$$
 in fun $y \rightarrow (x :: y :: one)$) : int \rightarrow int list

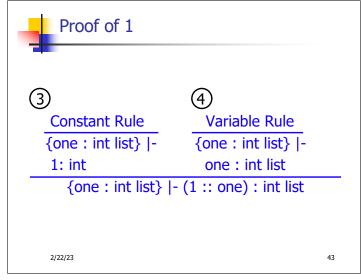
2/22/23

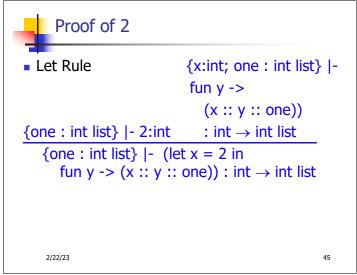
Example

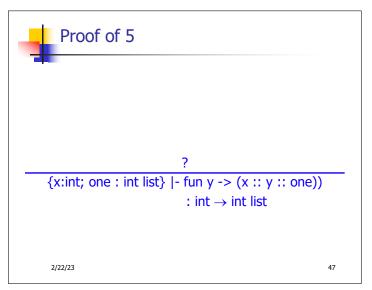
2/22/23 40

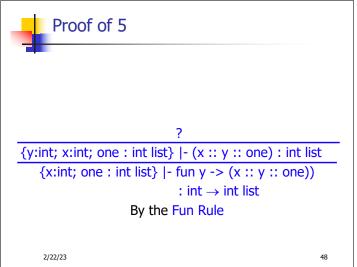


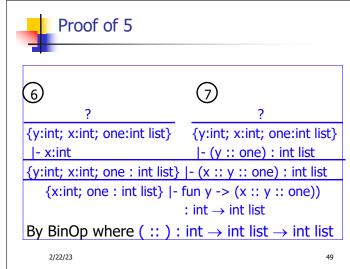


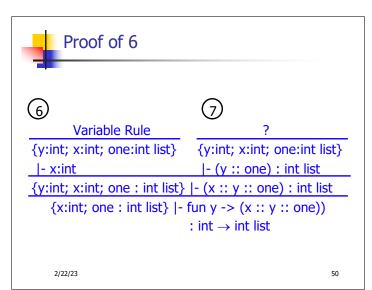


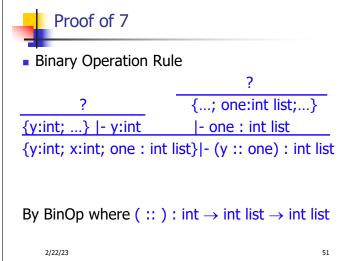


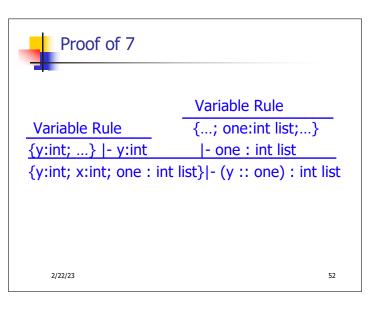












- Type Systems are logics; logics are type systems
- Types are propositions; propositions are types
- Terms are proofs; proofs are terms
- Function space arrow corresponds to implication; application corresponds to modus ponens

Curry - Howard Isomorphism

Modus Ponens

$$\begin{array}{c|cccc} A \Rightarrow B & A \\ \hline B & \end{array}$$

Application

$$\frac{\Gamma \mid -e_1 : \alpha \to \beta \quad \Gamma \mid -e_2 : \alpha}{\Gamma \mid -(e_1 e_2) : \beta}$$

2/22/23

54